
Darmstadt University of Applied

Sciences

– Faculty of Computer Science –

Evaluation of Synthetic Data Generation

Using the “Cut-Paste” Method for

Microorganism Detection

Submitted in partial fulfilment of the requirements for the
degree of

Bachelor of Science (B.Sc.)

by

Sebastian Jörz

Matriculation number: 1116144

First Examiner : Prof. Dr. Eva Brucherseifer
Second Examiner : Prof. Dr. Kawa Nazemi

ERKLÄRUNG

Ich versichere hiermit, dass ich die vorliegende Arbeit selbstständig verfasst und keine
anderen als die im Literaturverzeichnis angegebenen Quellen benutzt habe.

Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder noch nicht veröf-
fentlichten Quellen entnommen sind, sind als solche kenntlich gemacht.

Die Zeichnungen oder Abbildungen in dieser Arbeit sind von mir selbst erstellt worden
oder mit einem entsprechenden Quellennachweis versehen.

Diese Arbeit ist in gleicher oder ähnlicher Form noch bei keiner anderen Prüfungsbe-
hörde eingereicht worden.

05. März 2025
Sebastian Jörz

ABSTRACT

Training object detection models often relies on large annotated datasets. However,
for niche areas such as the detection of microorganisms under a microscope, annotated
datasets are scarce. Synthetic data generation methods offer a simple and efficient so-
lution to expand these small datasets. However, the creation of realistic synthetic data
remains challenging due to the difference between synthetic and real data distributions,
known as the synthetic-to-reality gap. To investigate this gap, the “Cut-Paste” method
is employed in combination with blending techniques to generate realistic synthetic
data.

This thesis evaluates the “Cut-Paste” method for synthetic data generation in the con-
text of microorganisms, specifically tardigrades, using the YOLOv11. Four individual
blending methods — Alpha blending, Gaussian blending, Poisson blending and Pyra-
mid blending — were assessed for their ability to seamlessly integrate cut-out objects
into new backgrounds. Additionally, a multi-method blending approach was tested,
and experiments were conducted with varying synthetic-to-real data ratios.

To quantify the synthetic-to-reality gap, three complementary metrics were used: (1)
the difference in mean Average Precision at 50% Intersection over Union threshold
(mAP@0.50) of the self-trained model, (2) the Fréchet Inception Distance (FID), and
(3) the CLIP Maximum Mean Discrepancy (CMMD). While the mAP@0.50 directly
measures the impact on object detection performance, FID and CMMD provide an
independent assessment by quantifying the distributional distance between synthetic
and real data.

The results demonstrate that the “Cut-Paste” method improves the performance of
the self-trained model by approximately 0.18 mAP@0.50 when using multi-method
blending and 0.16 mAP@0.50 with Pyramid blending. This suggests that incorporat-
ing synthetic data enhances the model’s robustness and generalization across different
domains. Furthermore, the FID and CMMD metrics support these findings, indicat-
ing that synthetic images generated with Pyramid blending and multi-method blending
are more similar to real images. These results underscore the importance of blending
techniques in reducing the synthetic-to-reality gap and improving the effectiveness of
synthetic data in training object detection models.

ZUSAMMENFASSUNG

Die Entwicklung von Objekterkennungsmodellen erfordert in der Regel große anno-
tierte Datensätze. In spezialisierten Anwendungsbereichen, wie etwa der Erkennung
von Mikroorganismen unter dem Mikroskop, sind derartige Datensätze jedoch selten
verfügbar. Eine effiziente Lösung bietet die Generierung synthetischer Daten, wobei
die realistische Erstellung solcher Daten eine Herausforderung darstellt. Diese Dis-
krepanz zwischen synthetischen und realen Daten ist auch als synthetic-to-reality gap
bekannt. In dieser Arbeit wird die “Cut-Paste”-Methode in Kombination mit verschie-
denen Blending-Methoden zur Generierung synthetischer Daten eingesetzt, um diese
Lücke zu untersuchen und zu quantifizieren.

Evaluiert wird die “Cut-Paste”-Methode für die Erzeugung synthetischer Trainingsda-
ten bei der Erkennung von Mikroorganismen, insbesondere Bärtierchen, mithilfe des
YOLOv11 Modells. Dabei wurden vier Blending-Methoden zur nahtlosen Integration
von Objekten in neue Hintergründe untersucht: Alpha-Blending, Gaussian-Blending,
Poisson-Blending und Pyramid-Blending. Zusätzlich wurde eine Kombination meh-
rerer Blending-Methoden getestet und Experimente mit verschiedenen Verhältnissen
synthetischer zu realer Daten durchgeführt.

Zur Quantifizierung der synthetic-to-reality gap wurde eine Auswahl von drei unter-
schiedlichen Metriken herangezogen: (1) die Differenz der mean Average Precision bei
einer Intersection over Union von 50% (mAP@0.50) des selbst trainierten Modells, (2)
die Fréchet Inception Distance (FID) und (3) die CLIP Maximum Mean Discrepancy
(CMMD). Während mAP@0.50 die Auswirkungen auf die Leistung der Objekterken-
nung direkt misst, bieten FID und CMMD eine unabhängige Bewertung, indem sie den
Abstand zwischen den Verteilungen synthetischer und realer Daten quantifizieren.

Die Ergebnisse zeigen, dass die “Cut-Paste”-Methode die Leistung des Modells signi-
fikant verbessert. Durch den Einsatz von Pyramid-Blending konnte eine Steigerung
um 0,16 mAP@0.50 erreicht werden, während die Kombination mehrerer Blending-
Methoden zu einer Verbesserung von 0,18 mAP@0.50 führte. Dies deutet darauf hin,
dass synthetische Daten das Modell robuster machen und die Generalisierungsfähig-
keit zwischen verschiedenen Domänen verbessern. Die Werte von FID und CMMD
bestätigen diese Ergebnisse und zeigen, dass die Blending-Methode einen signifikan-
ten Einfluss auf die synthetic-to-reality gap hat. Hierbei zeigten vor allem die Kombi-
nation der Methoden und Pyramid-Blending eine höhere Ähnlichkeit zu realen Daten.
Diese Erkenntnisse unterstreichen die Relevanz von Blending-Methoden für die Redu-
zierung der synthetic-to-reality gap und die effektive Nutzung synthetischer Daten im
Training von Objekterkennungsmodellen.

CONTENTS

I Thesis . 1

1 Introduction . 2
1.1 Problem Definition and Relevance 2
1.2 Goal . 3
1.3 Structure . 4

2 Theoretical Foundations . 6
2.1 Object Detection . 6
2.2 Metrics . 10
2.3 “Cut-Paste” Method . 13
2.4 Blending . 13
2.5 Synthetic-to-Reality Gap . 17

3 Related Work . 21
3.1 Synthetic Data Generation . 21
3.2 Synthetic-to-Reality Gap . 24
3.3 Blending . 25

4 Approach . 28
4.1 Cut Objects . 29
4.2 Augmentation . 30
4.3 Blending . 30
4.4 Dataset Mix . 34
4.5 FID and CMMD . 34

5 Evaluation Method . 35
5.1 Datasets . 35
5.2 Tests . 36
5.3 Parameters . 37

6 Results . 40

7 Conclusion . 44
7.1 Limitations . 44
7.2 Future work . 45

II Appendix . 46

A Code . 47

ILLUSTRATIONS

1.1 Tardigrades under a microscope . 3

2.1 Neural Network . 7
2.2 Single stage detector architecture - CNN 8
2.3 Object detection example . 9
2.4 YOLO Grid . 9
2.5 Intersection over Union . 10
2.6 Precision-Recall Curve . 12
2.7 Gaussian blending example . 14
2.8 Poisson blending theory . 15
2.9 Pyramid blending theory . 16
2.10 CLIP Embeddings . 18

4.1 Procedure of the approach . 29

5.1 Blending examples . 37

6.1 Heatmap for tests T1-T3 . 42
6.2 FID and CMMD for T1-T3 . 43

Part I

Thesis

1 INTRODUCTION

Over the past decade, deep learning has transformed the field of object detection [2,
10]. A significant challenge in this domain is the scarcity of high-quality training
data, for supervised learning [2, 30]. Labeling data is a time-consuming and expensive
process, which can introduce human and experimental biases that negatively impact
the model’s performance during deployment [30].

Furthermore, models have been shown to extrapolate poorly beyond their training
datasets and have limited out-of-distribution generalization behavior [58]. This phe-
nomenon is also known as the domain gap, which occurs when there is a significant
discrepancy between the distribution of the training data and the test data [23].

In order to address these issues, a number of data augmentation techniques have re-
cently been employed with increasing frequency, particularly the generation of syn-
thetic data [67], which has been shown to enhance the performance of object detection
models [12]. A notable benefit of synthetic data is its scalability, which allows for the
generation of extensive and varied datasets [67]. This is particularly advantageous in
specialized domains where access to authentic data is limited or challenging to obtain.

Synthetic data can also facilitate the bridging of the domain gap between training and
test data, thereby enhancing model generalization [23]. An effective approach involves
combining cut-out objects with images of different background environments [51],
which increased the models robustness by exposing it to a more extensive range of
scenarios. However, seamlessly integrating foreground elements into new backgrounds
can be challenging, as the synthetic images may appear unrealistic and fail to capture
the complexity of real-world data [12]. This discrepancy is referred to as the synthetic-
to-reality gap, which is defined as the difference between synthetic and real data [23].
The synthetic-to-reality gap builds on the domain gap, but focuses on the difference
between synthetic and real data, while the domain gap describes the difference between
domains in general. The difference between the domain gap and the synthetic-to-
reality gap is explained in more detail in section 3.2.

In order to bridge the synthetic-to-reality gap and enhance the model’s performance,
it is essential to generate synthetic images that are photorealistic and indistinguishable
from real images [12]. This objective can be accomplished by employing blending
methods, which merge synthetic images with real images to create more photorealistic
results [12].

1.1 PROBLEM DEFINITION AND RELEVANCE

Access to clean water is a fundamental requirement for public health and sustainable
development, as emphasized by the Sustainable Development Goal 6 (SDG 6) of the
United Nations [50]. The SDG 6 aims to ensure the availability and sustainable man-
agement of water and sanitation. In this context, microorganisms play a crucial role,
such as environmental monitoring, biotechnology, and medicine [47]. In particular,

2

1.2. GOAL

the detection of microorganisms in wastewater treatment is essential for monitoring
and optimizing the biological purification process [33]. Among these microorganisms,
tardigrades (water bears) are of particular interest, as they serve as biological indica-
tors for the efficiency of the purification process. Their presence and condition provide
insights into the health of the microbial community responsible for breaking down
organic matter in sewage treatment [33].

The detection of these microorganisms can be a challenging task, as it requires a high
level of expertise and can be time-consuming. Therefore, the automation of this pro-
cess using machine learning models could improve the efficiency and accuracy of the
detection process. However, the scarcity of high-quality training data poses a sig-
nificant challenge for the development of such models. For instance, in the context of
sewage plants, microorganisms are frequently observed to be surrounded by substantial
amounts of mud, as seen in Figure 1.1a. Meanwhile, most public datasets for microor-
ganisms are more clear and contain almost no mud, as seen in Figure 1.1b, since they
are often taken in a laboratory environment. Furthermore the images are often taken
with different microscopes, which can lead to different conditions, like illumination
and contrast [46]. This represents the typical problem of the domain gap between the
training and test data, as referenced by Dwibedi et al. [12] and Giakoumoglou et al.
[23]. Consequently, when a model is trained with images of a clean environment and
is then applied to images containing mud, it could result in the mud being identified
as microorganisms, and vice versa. This could lead to false positives and negatives,
which could have severe consequences in the context of sewage treatment, as it could
lead to incorrect conclusions about the health of the microbial community.

In order to address this challenge, it is necessary to evaluate a solution capable of gen-
erating synthetic images of microorganisms in such environments, thereby mitigating
the domain gap between the training and test data. Furthermore, it is essential that the
synthetic images are generated in a way that they are as realistic as possible, thereby
enabling the model to generalise effectively to real-world images.

(a) In a muddy environment. Source: own
image

(b) In a clear environment. Source: [34]

Figure 1.1: Tardigrades under a microscope.

1.2 GOAL

The objective of this thesis is to evaluate the effectiveness of synthetic data augmen-
tation for a limited, out-of-domain dataset of microorganisms — focusing particularly
on tardigrades — in order to enhance object detection performance. This is achieved

3

1.3. STRUCTURE

by training a state-of-the-art YOLOv11 model on both real and synthetic images and
comparing the mean Average Precision (mAP) values. The mAP values serve as a
primary indicator to quantify the synthetic-to-reality gap, which reflects how well the
model generalizes when synthetic images are incorporated into the training process.

Synthetic images are generated using a variety of blending techniques, namely Alpha,
Gaussian, Poisson, and Pyramid blending, with Pyramid blending being of particular
interest due to its limited prior application in this context. The thesis not only evaluates
the impact of each individual blending method on the model’s performance but also
investigates the effect of combining the best-performing methods to determine if a
multi-method approach further reduces the synthetic-to-reality gap.

To validate the findings from the YOLOv11 mAP comparisons, two additional metrics
are employed: the Fréchet Inception Distance (FID) and the CLIP Maximum Mean
Discrepancy (CMMD). These metrics provide an independent assessment by quantify-
ing the similarity between synthetic and real images from a distributional perspective,
thereby offering a more comprehensive evaluation of the impact of blending methods
on the syntoreal gap. In summary, three complementary metrics are employed to quan-
tify the synthetic-to-reality gap: (1) the mAP values of the self-trained model, (2) the
FID, and (3) the CMMD.

The goal can be summarized by the following research questions:

RQ1. How can synthetic generated images impact the model’s ability to generalize
between different environments?

RQ2. How does the selection of the blending method influence the synthetic-to-reality
gap?

This thesis will contribute to the field of object detection by providing the following
insights:

• Demonstrating that synthetic data augmentation can improve the generalization
of object detection models in out-of-domain datasets, particularly in the context
of microorganisms.

• Evaluating multiple blending methods — including the less-explored Pyramid
blending — and their impact on the quality of synthetic images.

• Quantifying the synthetic-to-reality gap using YOLOv11 mAP values and val-
idating these findings with FID and CMMD metrics, offering a comprehensive
analysis of how blending methods affect the synthetic-to-reality gap.

1.3 STRUCTURE

In order to achieve the objectives of this thesis, the following structure outlines the
methodology, experimental setup, and evaluation of the results.

First, the theoretical background of the research will be discussed in chapter 2, includ-
ing the theoretical fundamentals of object detection, their metrics, and blending meth-
ods. It will also introduce the YOLOv11 object detection algorithm and its fundamen-
tals. Furthermore, metrics to quantify the synthetic-to-reality gap will be introduced,
including evaluations based on the performance of object detection models, as well as

4

1.3. STRUCTURE

the FID and CMMD metrics. In chapter 3, the current state of the art for synthetic data
generation, blending methods and the quantification of the synthetic-to-reality gap will
be reviewed. This will provide a comprehensive overview of the current research land-
scape and identify potential research gaps. The methodology of the experiment will be
outlined in chapter 4, which includes the synthetic data generation method as well as
the augmentation and blending process. In chapter 5, the methods used for the eval-
uation and the test cases will be presented. This will include the datasets used in the
experiment, along with the design of the tests. In addition, the parameters employed
for the generation of synthetic data and the training of the model will be outlined. The
results of the experiment will be presented in chapter 6, including the performance of
the model on the synthetic data and a comparison with the performance on the real
data. The results will be analyzed and discussed in the context of the research ques-
tions. Further, the quantification of the synthetic-to-reality gap using the self-trained
model will be compaired with the FID and CMMD metrics. The results show that
the synthetic data generation method is able to reduce the synthetic-to-reality gap be-
tween the training and test data and that the additional metrics are able to quantify
the synthetic-to-reality gap. Finally, the conclusions of the study will be summarized
in chapter 7, with a discussion of the findings, as well as recommendations for future
research in this area.

5

2 THEORETICAL FOUNDATIONS

This chapter provides an overview of the theoretical foundations of object detection,
synthetic data generation and quantification of the synthetic-to-reality gap. It begins
with an introduction to object detection, how it works, and its challenges, especially
in the field of microscopy. The chapter then introduces the YOLOv11 object detection
algorithm and its fundamentals, along with the metrics used to evaluate object detection
models. Moreover, the chapter concludes with an overview of synthetic data generation
used in this work, including the “Cut-Paste” method. Finally, the evaluation metrics
employed in this thesis to quantify the synthetic-to-reality gap will be explained. The
concept of feature embeddings will be discussed in order to provide the theoretical
background behind the application of these metrics in the context of the synthetic-to-
reality gap.

2.1 OBJECT DETECTION

Object detection is a computer vision technique that involves identifying objects within
an image or video and assigning them to predefined categories [38]. Some of these
techniques include traditional computer vision algorithms, machine learning algo-
rithms, as well as deep learning algorithms. The goal of these techniques is to identify
and classify objects within an image or video, as well as to locate them within the
image or video. As one of the primary tasks of computer vision, the ultimate goal of
object detection is to detect the classes and locations of objects [46].

An object is a single entity that can be classified into a category, while an instance
is a specific occurrence of an object in an image [12]. Object detection is the task
of detecting and classifying objects in an image, while instance segmentation is the
task of detecting and segmenting individual instances of objects in an image. Instance
segmentation is a more challenging task than object detection, as it requires identifying
and segmenting each instance of an object in an image. In this work, it should mainly
be about traditional object detection. Object segmentation is not the focus of this work.

Object detection, as in the context of this work, is typically performed using machine
learning algorithms, such as deep learning algorithms. These algorithms are trained on
large datasets of labelled images, where each image is annotated with the class labels
and bounding boxes of the objects present in the image [27].

2.1.1 NEURAL NETWORKS

To process the images, the images are fed into a neural network, which consists of
multiple layers of neurons that process the image data and extract features from the
images. A neural network is a mathematical model that is inspired by the structure
and function of the human brain [32]. It is composed of multiple layers of neurons
that process the input data and make predictions about the objects in the images. The

6

2.1. OBJECT DETECTION

neurons are connected to each other through weights and biases, which are used to
adjust the parameters of the network during training [32]. A neuron can be thought
of as a mathematical function that takes an input and produces an output, which is
then passed to the next layer of neurons in the network. A function of a neuron can
be for example y = f(

→n
i=1 wixi + b), where y is the output of the neuron, f is the

activation function, wi are the weights, xi are the inputs, and b is the bias. The weights
and biases are adjusted during training to improve the accuracy of the predictions made
by the network [20]. The activation function is a mathematical function that introduces
non-linearity into the network, allowing it to learn complex patterns and make accurate
predictions [20].

For the detection of objects in images, each pixel in the image is represented as an
input to the first layer, the input layer of the neural network [49]. The neural network
processes the image data by passing it through multiple layers of neurons, which ex-
tract features from the images and make predictions about the objects in the images.
These layers are referred to as “hidden layers”. An example of a neural network with
one input layer containing three input neurons, two hidden layers, and one output layer
containing one output neurons is shown in Figure 2.1. For object detection, the input to
the neural network is an image, and the output is the class labels and bounding boxes
of the objects detected in the image [59].

Figure 2.1: Neural Network with one input layer, two hidden layers and one output
layer. Source: [69]

Convolutional Neural Networks (CNNs) are a type of neural network that is commonly
used for object detection tasks. CNNs are designed to process images and extract fea-
tures from the images by convolving filters over the image data to detect patterns and
features in the images [10]. CNNs are composed of multiple layers of neurons, includ-
ing fully connected layers, convolutional layers and pooling layers. An illustration for
this can seen in Figure 2.2, where the input image is passed through multiple convolu-
tional layers to extract features from the image. The result is the class labels (cls) and
the location of the objects (loc) in the image. The application of these layers is twofold:
first, they are employed to detect edges, textures and shapes in images; secondly, they
are utilised to combine these features in order to detect objects in images. CNNs are
trained on extensive datasets of labelled images, with the purpose of learning the fea-
tures of objects in images and making predictions about objects in new images [10].

The bounding boxes indicate the location of the objects within the image, while the
class labels indicate the category of the objects [10]. This is also known as the ground
truth data, as it provides the correct labels and locations of the objects in the image. The
bounding box is a 2D rectangle that encloses the object in the image, while the class
label is the category of the object, such as car, person, or dog. The ground truth data is

7

2.1. OBJECT DETECTION

Figure 2.2: Single stage detector architecture. With the input image, the CNN extracts
features and predicts the class labels and bounding boxes of the objects in the image.
Source: [10]

used to train the object detection algorithm to accurately detect and classify objects in
new images [27]. In contrast, the predictions made by the object detection algorithm
are the class labels and bounding boxes of the objects detected in the image [10]. An
example of the ground truth and a prediction is shown in Figure 2.3a and Figure 2.3b.
During training, the algorithm predicts the class labels and bounding boxes of the
objects in the image, and the predictions are compared to the ground truth labels to
calculate the difference between them [10]. This difference, also known as the loss,
is used to update the parameters of the algorithm to improve its performance. The
goal of training is to minimize the loss and improve the accuracy of the predictions
made by the algorithm [24]. This process is known as backpropagation, where the
loss is propagated back through the network to update the weights and biases of the
algorithm [20]. The learning rate affects the size of the updates made to the weights and
biases during training, while the loss function determines how the loss is calculated and
minimized during training [20]. A higher learning rate results in larger updates, while
a lower learning rate results in smaller updates. The loss function is a mathematical
function that measures the difference between the predicted and ground truth labels of
the objects in the image [20].

Summarizing, object detection can be understood as a synthesis of classification, lo-
calisation, and segmentation tasks, as outlined by Diwan et al. [10]. The process of
object detection entails the accurate classification and efficient localisation of one or
more objects within an image. The classification task involves assigning a label to
each object detected in the image, while the localisation task involves determining the
precise location of each object within the image.

2.1.2 CHALLENGES

However, object detection presents several challenges, as discussed in [10]. A primary
challenge is the inherent variation in object occupancy within an image, where ob-
jects may occupy a significant proportion of the pixels (e.g., 70–80%) or a very small
proportion (e.g., 10% or less). Furthermore, the processing of low-resolution visual
content presents a challenge, as it can reduce detection accuracy. Additionally, the
presence of multiple objects of varying sizes in a single image adds complexity to the
task. The scarcity of labelled data constitutes a significant impediment to the devel-
opment of robust models. Additionally, the detection of overlapping objects within

8

2.1. OBJECT DETECTION

(a) Ground Truth (b) Prediction

Figure 2.3: Example of object detection. (a) Ground truth with bounding boxes and
class labels. (b) Prediction with bounding boxes and class labels.

visual content remains a substantial challenge, as it complicates both classification and
localisation efforts.

Special challenges arise when applying object detection to microscopy images, as dis-
cussed by Ma et al. [46]. These challenges include low contrast, color overlap, and dif-
ferent illumination conditions. These challenges can make it difficult to detect objects
in microscopy images. Additionally, the presence of noise and artifacts in microscopy
images can further complicate the object detection process. The small size of objects
in microscopy images can also pose a challenge, as it can be difficult to accurately de-
tect and classify objects that are very small in size [58]. Furthermore, the presence of
multiple objects in a single image can make it difficult to accurately detect and classify
each object. These challenges highlight the need for robust object detection algorithms
that can accurately detect and classify objects in microscopy images.

2.1.3 YOLOV11

In the context of object detection, YOLO (You Only Look Once) [59] represents a
single-stage real-time detection system, as described by [10]. YOLO formulates ob-
ject detection as a regression problem, allowing the detection of multiple objects in an
image through a single forward pass of a convolutional neural network (CNN). The
system divides the input image into an S → S grid, with each grid cell predicting B
bounding boxes, confidence scores, and C class probabilities, as shown in Figure 2.4.
The confidence score is predicated on two factors. First, the likelihood that a bound-

Figure 2.4: YOLO divides the image into a grid and predicts bounding boxes and class
labels for each grid cell. Source: [59]

9

2.2. METRICS

ing box contains an object is considered. Secondly, the accuracy of the bounding box
localization is taken into account. The YOLO algorithm combines object localization
and classification in a single step. This eliminates the need for region proposal meth-
ods, which are commonly used in two-stage detectors such as R-CNN [31].

YOLOv11 [40] is the latest iteration of the YOLO object detection algorithm. It builds
on the previous versions of YOLO by incorporating new features and improvements to
enhance its performance. YOLOv11 is designed to be faster and more accurate than
its predecessors, making it an ideal choice for real-time object detection applications.

2.2 METRICS

The performance of object detection models is evaluated through the utilisation of var-
ious metrics. These metrics are employed to assess the model’s precision in identifying
objects within an image, as referenced in [52]. Each metric offers a distinct perspec-
tive on the model’s performance, enabling the evaluation of its diverse object detection
capabilities.

2.2.1 INTERSECTION OVER UNION

In order to identify a detection that is correct, a metric is utilised to measure the overlap
between the predicted bounding box and the correct bounding box, which is referred
to as the ground truth. This metric is termed the Intersection over Union (IoU) [10,
14]. The IoU is calculated as the ratio of the area of the intersection against the area
of the union of the two bounding boxes. The formula for IoU is given by Everingham
et al. [14] as:

IoU =
Area of Intersection (A ↑ B)

Area of Union (A ↓ B)
(2.1)

The IoU is a number between 0 and 1, where a high IoU value indicates that the
model’s bounding box predictions are accurate, while a low IoU value indicates that
the model’s bounding box predictions are inaccurate [52]. An example of IoU is shown
in Figure 2.5, where one of the boxes represents the ground truth, and the other box
represents the predicted bounding box.

IoU is commonly used as a threshold for determining whether a detection is consid-
ered correct or not. For example, in the PASCAL VOC challenge [14], a detection is
considered correct if the IoU value is above 0.5, indicating that the predicted bounding
box overlaps with the ground truth bounding box by at least 50% [14].

Figure 2.5: Intersection over Union (IoU) for object detection. Source: [62].

10

2.2. METRICS

This threshold is used to classify the model’s predictions into four categories: true
positive (TP), false positive (FP), false negative (FN), and true negative (TN) [24]. A
true positive occurs when the model correctly detects an object, while a false positive
occurs when the model predicts an object that is not present. A false negative occurs
when the model fails to detect an object that is present, and a true negative occurs
when the model correctly does not detect an object. These categories are then used to
calculate other metrics.

Predicted Values

Positive Negative

Actual Values
Positive TP FN
Negative FP TN

Table 2.1: Classification of predictions into true positive (TP), false positive (FP), false
negative (FN), and true negative (TN). Left-side: Predicted values, top: Actual values.

2.2.2 MEAN AVERAGE PRECISION

The mean average precision (mAP) is a metric employed to evaluate the performance
of object detection models [24]. To calculate the mAP, the Precision and Recall metrics
are utilised, and these are then used to calculate the AP for each class. Subsequently,
the mAP is calculated as the mean of the AP values across all classes [46].

Precision and Recall

Precision is a measure of how many of the objects, detected by the model, are actually
correct [24, 46, 52]. The formula for precision is given by [24]:

Precision =
TP

TP + FP
. (2.2)

A high precision indicates fewer false positives, while a low precision suggests more
false positives.

Recall quantifies the proportion of actual objects correctly detected [24, 52], given
by [24]:

Recall =
TP

TP + FN
. (2.3)

A high recall means fewer false negatives, whereas a low recall implies that some
objects are missed.

Precision-Recall Curve

The precision-recall curve visualizes the trade-off between precision and recall at vary-
ing confidence thresholds [52]. Each prediction is assigned a confidence score, influ-
encing detection accuracy. The Precision at a given threshold ω is defined by [52]

Precision(ω) =
TP(ω)

TP(ω) + FP(ω)
(2.4)

11

2.2. METRICS

and the Recall at a given threshold ω is represented by [52]

Recall(ω) =
TP(ω)

TP(ω) + FN(ω)
. (2.5)

A high precision-recall curve signifies robust detections, while a lower curve suggests
reduced accuracy. An example is illustrated in Figure 2.6.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

Precision-Recall Curve

Confidence 0.7
Confidence 0.5
Confidence 0.3

Figure 2.6: Example of a Precision-Recall Curve for three confidence thresholds.

Average Precision and Mean Average Precision

The Average Precision (AP) evaluates object detection performance as the area under
the precision-recall curve [24, 52]. It is calculated as:

AP =
1

11

↑

r→{0,0.1,...,1}

Precision(r). (2.6)

Instead of integration, precision is averaged at eleven recall levels to ensure a mono-
tonic curve [14]:

Precision(r) = max
r ↑↭r

Precision(r ↑). (2.7)

The mean Average Precision (mAP) is calculated as the mean of the AP values across
all classes [46]:

mAP =
1
N

N↑

i=1

APi, (2.8)

where N is the total number of classes, and APi is the average precision for the i-
th class. A higher mAP value indicates better performance of the object detection
model. The IoU thresholds (e.g., mAP@0.5, mAP@[0.5:0.95]) further refine detection
accuracy [14], where IoU values determine correct detections.

12

2.3. “CUT-PASTE” METHOD

2.3 “CUT-PASTE” METHOD

The generation of synthetic data can be achieved through a variety of approaches. The
method outlined in this thesis, referred to as the “Cut-Paste” method, involves cut-
ting objects from one image and pasting them into another image [9, 12, 19]. In the
majority of cases, the objects which are pasted into the new image are named the fore-
ground, while the image into which the objects are pasted is named the background.
The objects are first cut-out using a binary mask, which defines the boundaries of the
objects. They are then pasted into new images, which serve as the background. This
method allows for the generation of large datasets with minimal effort and can be used
to create diverse training data for object detection models. The “Cut-Paste” method
can mathematically be represented as:

Ifinal(x,y) =

↓
Iforeground(x,y), if (x,y) ↔ foreground
Ibackground(x,y), otherwise

, (2.9)

where Iforeground and Ibackground are the pixel values of the foreground and background
images, respectively.

2.4 BLENDING

Blending is the process of seamlessly integriating the foreground elements into the
background environment, to prevent the emergence of pixel artifacts. The blending of
objects into new images can be challenging due to the differences in lighting, color,
and texture between the foreground and background images. Dwibedi et al. [12] and
Giakoumoglou et al. [23] realised, that this can result in visible artifacts in the final
image, which can negatively impact the performance of the model. To address this
issue, traditional visual computing techniques, such as blending, can be used.

To achieve this, different blending methods can be used. The most common blend-
ing methods in the context of synthetic data generation are Alpha blending, Gaussian
blending, Poisson blending. For blending of package boxes, approaches also use mo-
tion blurring [51]. Pyramid blending is used less often, but can also be used for blend-
ing objects into new images [19]. An example for the finished blending methods, in
the case of this work, can be seen in Figure 5.1. The objects are outlined with their
ground truth bounding boxes.

Other approaches, like motion blurring, can also be used to blend objects into new
images [51]. Given the infrequency with which these methods are employed, this
paper is constrained to the aforementioned methods.

2.4.1 ALPHA BLENDING

Alpha blending is a widely used and simple blending technique that combines the
foreground and background images by assigning a transparency value to each pixel in
the foreground image [12, 22]. This transparency value, known as the alpha channel
(or alpha mask), determines the opacity of the pixel, allowing the background to show
through. The alpha channel can either be binary or continuous, depending on the

13

2.4. BLENDING

complexity of the blending effect required. Binary alpha channels are a value of 0 or

1, where 0 represents the background and 1 represents the object [17]. Continuous
alpha channels are grayscale images with pixel values between 0 and 1, where 0 is
transparent and 1 is opaque [55].

For a binary mask, the alpha channel is defined by Ghiasi et al. [22] as:

ε(x,y) =

↓
1, if (x,y) ↔ object
0, otherwise

. (2.10)

An example of a mask can be seen in Figure 2.7a, where the object is represented by
white pixels and the background by black pixels.

To calc the final image, the alpha channel is used to blend the object into the back-
ground image and compute the final image. The final formula for a two-dimensional
image, can be expressed based on a rewritten formula from Zanella et al. [74]:

Ifinal(x,y) = If(x,y) · ε(x,y) + Ib(x,y) · (1 ! ε(x,y)), (2.11)

where (x,y) are the pixel coordinates of the image, and If and Ib are the pixel values of
the foreground and background images, respectively. When using a binary mask, the
final image is the pixel value of the foreground image if the mask is 1, and the pixel
value of the background image if the mask is 0. For continuous alpha channels, the
final image is a linear combination of the foreground and background images, weighted
by the alpha channel. This method is computationally efficient and widely used for
blending in synthetic dataset generation [12].

Sometimes the Alpha blending method is called no blending [12], linear combina-
tion [74] or trivial blending [19], because it is the simplest blending method. An
example of Alpha blending can be seen in Figure 5.1a.

2.4.2 GAUSSIAN BLENDING

Gaussian blending smooths the boundaries of the pasted object by applying a Gaussian
filter to the region of interest. Rather than being a standalone blending method, it func-
tions as a blurring technique that is often used in combination with Alpha blending.
For example, the mask responsible for the blending effect is smoothed using Gaussian
blending, as seen in Figure 2.7b. This makes the edges of the mask more smooth.

(a) Mask (b) Blurred Mask

Figure 2.7: Example of Gaussian blending. (a) Mask with sharp edges. (b) Blurred
mask with smoothed edges. The blurred mask is then used for blending the object into
the background, for example with Alpha blending.

14

2.4. BLENDING

The Gaussian filter is defined by Lindeberg [45]:

G(x,y) =
1

2ϑϖ2e
! x2+y2

2ω2 , (2.12)

where ϖ is the standard deviation of the Gaussian distribution, and x and y are the pixel
coordinates. By convolving the object edges with the Gaussian kernel, this method
reduces sharp transitions and integrates the object more naturally into the background.
This technique is widely used in computer vision and image processing to enhance the
visual quality of composite images [12].

2.4.3 POISSON BLENDING

Poisson blending [54] solves the problem of seamless integration by ensuring that the
gradient of the composite image matches the gradient of the foreground object while
blending it with the background. This approach adjusts the pixel intensities in the
overlapping region to match the surrounding background, ensuring smooth transitions.
The Poisson equation is defined as:

∆f = ↗ · v, (2.13)

where f is the function representing the pixel intensities in the region of interest, ∆ is
the Laplacian operator, and v is the guidance vector field derived from the gradients
of the source image [28, 54]. The boundary conditions are given by the pixel values
of the target image on the boundary of the region. Therefore it is used by [12, 21,
23, 51]. Despite its high visual quality, Poisson blending is computationally expensive
and may struggle with large intensity differences between foreground and background
images [28].

Figure 2.8: Poisson blending [54] positions a source patch g, along with its associ-
ated vector field v and support region Ω, onto a target background f↓. The boundary
conditions φΩ are set to match the values of the target image. To achieve a seamless
integration, f↓ is composited with f, which is a modified version of g, computed by the
algorithm. Source: [28]

2.4.4 PYRAMID BLENDING

15

2.4. BLENDING

Pyramid blending [1, 42] is an image blending technique designed to seamlessly com-
bine two images by utilizing multi-scale representations. It addresses challenges such
as visible seams, mismatched colors, and inconsistent textures that arise when merging
images directly.

For this method, image pyramids are used to decompose the images into multiple lev-
els of detail. Image pyramids are hierarchical representations of an image that capture
different scales of the image, from low-frequency components to high-frequency de-
tails [1]. An illustration can seen in Figure 2.9 (a). The Gaussian pyramid captures the
low-frequency components of the image, while the Laplacian pyramid preserves the
high-frequency details [42].

Figure 2.9: An example of Gaussian and Laplacian pyramids from the same input im-
age: (a) is a visual representation of an image pyramid; (b) shows the first three levels
of Gaussian pyramid; (c) shows the first three levels of Laplacian pyramid. Adapted
from: [1]

First, the Gaussian pyramid for the mask and its complement is created [42]. This
is done by repeatedly applying a Gaussian blur to the mask and downsampling it.
This process captures the low-frequency components of the mask. An example of a
Gaussian pyramid can be seen in Figure 2.9 (b).

Next, Laplacian pyramids are derived by computing the difference between successive
levels of the Gaussian pyramid, preserving high-frequency details such as edges and
textures [42]. This step needs the Gaussian pyramid for the images, but only as a step
to get the Laplacian pyramid. A Laplacian pyramid can be calculated as the difference
between the Gaussian pyramid and the upsampled version of the next level of the
Gaussian pyramid [1]. The Laplacian pyramid is computed as:

Li = Gi ! upsample(Gi+1), (2.14)

where Li is the current level of the Laplacian pyramid, Gi is the current level of the
Gaussian pyramid of the image, and upsample(Gi+1) is the upsampled version of the

16

2.5. SYNTHETIC-TO-REALITY GAP

next level of the Gaussian pyramid. An example of a Laplacian pyramid can be seen
in Figure 2.9 (c).

After that, the Laplacian components of the two images are combined using the mask’s
Gaussian levels as weights [42]. Mathematically, this step can be expressed as [42]:

Lk
blend = Mk · Lk

image1 + (1 !Mk) · Lk
image2, (2.15)

where Lk
blend is the blended Laplacian at level k, Mk is the Gaussian mask at level k,

and Lk
image1 and Lk

image2 are the Laplacians of the two images at level k.

Finally, the blended Laplacian pyramid is collapsed to obtain the final blended image,
starting from the smallest level of the pyramid and iteratively adding the upsampled
Laplacian components [42].

2.5 SYNTHETIC-TO-REALITY GAP

This section introduces the concept of the domain gap and the synthetic-to-reality gap,
followed by an explanation of how the synthetic-to-reality gap can be quantified.

The domain gap is a general term that describes the difference between two datasets,
including the difference between various real-world datasets [56]. For instance, the
difference between the domains in Figure 1.1, where one image is taken in a muddy
environment and the other in a clear environment, represents a domain gap.

The synthetic-to-reality gap is a specific type of domain gap that describes the dif-
ference between synthetic and real data [23]. For instance, the difference between a
synthetic image of a tardigrade, generated with the “Cut-Paste” method, and a real
image of a tardigrade, represents the synthetic-to-reality gap. Other names for the
synthetic-to-reality gap include the simulation-to-reality gap, the Syn2Real gap and
reality gap [8, 56].

As Alhaija et al. [2] pointed out, “the difference in data distribution and pixel-value
statistics between the real and virtual data prevents it from being a direct replacement
to real training data” [2, p. 8]. This describes that the synthetic-to-reality gap is a
challenge in the field of synthetic data generation, as the synthetic data generated by a
model is often not realistic enough to be used as a direct replacement for real data [23].

2.5.1 QUANTIFICATION

The synthetic-to-reality gap can be quantified using various evaluation metrics [8]. On
the one hand, the performance of object detection models can be used to assess the
synthetic-to-reality gap [9]. On the other hand, image quality metrics, such as FID and
CMMD, can be used to measure the similarity between synthetic and real images [5,
29]. To understand the calculation of the FID and CMMD metrics, the concept of
feature embeddings is introduced, as they are used to compute the similarity between
real and synthetic images.

Embeddings can be defined as mathematical representations of objects in a continuous
vector space [3]. They are utilised to visualise the semantic similarities between ob-
jects using numerical distances. In the context of image analysis, feature embeddings

17

2.5. SYNTHETIC-TO-REALITY GAP

can be considered as high-dimensional representations of data that capture features or
patterns in the data [41]. These embeddings are frequently extracted from deep neural
networks, such as CNNs that have been pre-trained on extensive datasets, as referenced
by Kiela and Bottou [41] and Radford et al. [57].

For instance, the CLIP [57] model is trained on a large-scale dataset of 400 million
images with associated textual descriptions. The model learns to map images and text
into a shared embedding space, where the similarity between images and text is mea-
sured using their embeddings. As seen in Figure 2.10 (1), the Image and Text are both

Figure 2.10: CLIP Embeddings. (1) Generating the embeddings for images and text.
(2) Generating the encodings for the text classes. (3) Generating the encodings for the
image classes. (2) and (3) are transformed into the shared embedding space, where the
similarity between the image and text embeddings is computed. Source: [57]

encoded using a Text and Image Encoder, respectively. They are then projected into a
shared embedding space, where the similarity between the image and text embeddings
is computed [57]. The model is trained to maximize the similarity between correspond-
ing image-text pairs and minimize the similarity between non-corresponding pairs. In
the prediction process, seen in Figure 2.10 (2) and (3), the model uses the classes from
the text encoder to predict the image embeddings and vice versa. The similarity be-
tween the predicted embeddings is then used to determine the correspondence between
the image and text.

Object Detection Performance Using object detection performance to quantify the
synthetic-to-reality gap is a common approach in the field of computer vision [8]. For
example, multiple object detection models are trained separately on synthetic and real
data and their performances are compared to measure the synthetic-to-reality gap [8].

In this thesis, this will be achieved by training multiple YOLOv11 object detection
models on synthetic and real data, as outlined in chapter 4 and chapter 5. The per-
formance, calculated as the mAP, will then be employed to quantify the synthetic-to-
reality gap based on the difference in performance between the two domains.

Another approach to quantify the synthetic-to-reality gap is to use image quality met-
rics, such as FID and CMMD [5]. These two metrics were selected on the basis of
section 3.2 and can also be used to quantify the synthetic-to-reality gap of synthetic
images. In contrast to the requirement for object detection performance to be trained

18

2.5. SYNTHETIC-TO-REALITY GAP

directly on the data, image quality metrics can be achieved through the use of pre-
trained models. These models extract feature embeddings from the images, which are
then utilised to compare and quantify the synthetic-to-reality gap [5].

Fréchet Inception Distance The Fréchet Inception Distance (FID) [29] is a widely
used metric to evaluate the quality of images generated by models such as Generative
Adversarial Networks (GANs). FID measures the similarity between the distributions
of real and generated images by comparing their statistical properties, specifically their
feature embeddings. It is based on the idea that high-quality generated images should
have feature distributions that are similar to those of real images. FID utilizes feature
representations extracted from a pre-trained Inception-v3 network, which is a deep
convolutional neural network trained on the ImageNet dataset [29].

The FID score is calculated by first computing the means µP, µQ and covariances
ΣP, ΣQ of the feature distributions for real and generated images, respectively. The
P represents the distribution of real images and Q the distribution of generated im-
ages. These statistical moments are then used to compute the Fréchet distance (also
known as the squared Wasserstein-2 distance) between the two multivariate Gaussian
distributions. The formula for the FID score is given by [11, 29, 36]:

dist2
F(P,Q) = ↘µP ! µQ↘2

2 + Tr
(
ΣP + ΣQ ! 2(ΣPΣQ)

1/2) , (2.16)

where µP and µQ are the means, and ΣP and ΣQ are the covariances of the real
and generated image distributions, respectively. The term ↘µP ! µQ↘2

2 measures the
squared Euclidean distance between the means of the two distributions. The term
Tr

(
ΣP + ΣQ ! 2(ΣPΣQ)1/2

)
uses the trace operator Tr to quantify the difference in

the covariance structures of the distributions, which sums the diagonal elements of a
matrix A as Tr(A) =

→
i aii [16]. A lower FID score indicates that the generated

images are closer to the real images in terms of both their means and covariances.

While FID is widely used, it makes the assumption that the feature representations
of real and generated images follow multivariate Gaussian distributions [11]. This
assumption may not always hold in practice, especially when the real and generated
image distributions are complex or multimodal [36]. As a result, the FID score may
fail to capture the full range of differences between the two distributions in some cases.

CLIP Maximum Mean Discrepancy The CLIP Maximum Mean Discrepancy
(CMMD) is a metric designed to address certain limitations of the FID. CMMD uses
feature embeddings from the above-mentioned CLIP model to quantify the similarity
between real and generated images [36]. Unlike FID, CMMD measures the discrep-
ancy between the distributions of real and generated images without assuming any
specific statistical distribution. It leverages the Maximum Mean Discrepancy, which
quantifies the distance between two probability distributions based on their feature em-
beddings. The formular for CMMD, where P represents the distribution of real images
and Q the distribution of generated images, is given by [36]:

dist2(P,Q) = Ex,x ↑∼P[k(x, x ↑)] + Ey,y ↑∼Q[k(y,y ↑)]! 2Ex∼P,y∼Q[k(x,y)], (2.17)

19

2.5. SYNTHETIC-TO-REALITY GAP

where x are samples from the real image distribution P and y are samples from the
generated image distribution Q. The E terms represent the expectation over the distri-
butions of real and generated images, respectively. More specifically, the three terms
in the equation represent the following:

• Ex,x ↑∼P[k(x, x ↑)]: Similarity between pairs of real images, where x and x ↑ are
samples from the real image distribution P.

• Ey,y ↑∼Q[k(y,y ↑)]: Similarity between pairs of generated images, where y and
y ↑ are samples from the generated image distribution Q.

• Ex∼P,y∼Q[k(x,y)]: Similarity between real and generated images, where x is a
sample from the real image distribution P and y is a sample from the generated
image distribution Q.

To calculate the similarity between the feature representations of images, the Radial
Basis Function (RBF) kernel is used, defined as [36]:

k(x,y) = exp
(
!
↘x! y↘2

2ϖ2

)
, (2.18)

where ϖ is a hyperparameter that controls the bandwidth of the kernel. In the case of
CMMD, it is set to 10 [36].

20

3 RELATED WORK

In this chapter, the synthetic data generation, the synthetic-to-reality gap and blending
methods in the context of this thesis are discussed.

The chapter begins by introducing the “Cut-Paste” method as a common approach to
generating synthetic data. For the sake of completeness, other methods, such as 3D
models or machine learning-based methods, are also discussed briefly. This chapter
thus establishes the “Cut-Paste” method as the most suitable approach for the use case
of this work.

After that, the importance of the realism of the synthetic data will be examined, with
a particular focus on its potential to reduce the synthetic-to-reality gap. Additionally,
methodologies for quantifying this gap will be explored, along with additional metrics
relevant to its measurement.

Finally, the discussion will move on to the various blending methods that have been
developed for the purpose of combining synthetic and real images. This will also
be discussed in the context of the “Cut-Paste” method and reducing the synthetic-to-
reality gap.

3.1 SYNTHETIC DATA GENERATION

Different methods can be used to generate synthetic data. One common approach is to
use 3D models or Computer-Aided Design (CAD) models to create images. Another
approach is to use the “Cut-Paste” method to combine objects from different images.
Additionally, there are machine learning (ML)-based approaches that attempt to gener-
ate images that appear realistic, for instance by using Generative Adversarial Networks
(GANs) [25].

3D and CAD Methods Using 3D models or CAD based approaches, objects of in-
terest are rendered in a 3D environment and then projected onto a 2D plane. This
facilitates the generation of images from different viewpoints and with different light-
ing conditions. In contrast to the “Cut-Paste” method, 3D models are more complex
to generate. They require to have models of the objects, which can be hard to get or
to manually create. Furthermore, this often requires domain knowledge [15] to reduce
the synthetic-to-reality gap [9].

Several studies have explored different ways to generate synthetic training data using
3D rendering. Hinterstoisser et al. [30] used OpenGL with Phong Shading and Gaus-
sian noise to integrate 3D CAD models into background images. Johnson-Roberson
et al. [37] demonstrated that video game environments, such as GTA V, can be used
to generate training data for real-world applications. Prakash et al. [56] introduced
structured domain randomization (SDR), maintaining scene context while varying ob-
ject placements. Hybrid approaches, such as Alhaija et al. [2], combine real imagery

21

3.1. SYNTHETIC DATA GENERATION

with rendered objects for greater realism. In drone research, Dieter et al. [8] leveraged
Unreal Engine and Microsoft AirSim to generate synthetic datasets, highlighting the
risk of overfitting when relying solely on real data.

“Cut-Paste” Method The “Cut-Paste” method, as introduced in section 2.3, is easier
to implement than 3D models and can be used with less computational power [4].
Especially for the use case of this work, under a microscope, the boundary conditions
from Dirr et al. [9], where “the flat and slim parts typically have a small number of
preferred orientations around the x- and y-axis, so that fewer perspective views of
the parts occur during the application” [9, p. 8], are met. Therefore, the “Cut-Paste”
method is a suitable approach for this work.

In their work, Dwibedi et al. [12] propose to train an object detector using only syn-
thetic images generated with the “Cut-Paste” method. The objects they tried to de-
tect were kitchenware. The objective was to detect distinct objects from a variety of
viewpoints. They gained up to 21% in relative performance when combined with real
images. They used a model pre-trained on the MSCOCO [44] dataset. The primary
focus of the study centred on the methodologies employed for blending. Additionally,
the researchers implemented diverse splits between real and synthetic data. Already
with a mix of 10% real and synthetic data they observed a performance increase about
10 AP. The results indicate that the model exhibits superior performance in domain
generalization. Additionally, the researchers posited that rendering with 3D models is
not always an optimal approach, as the model may encounter difficulties generalizing
to real data due to the alteration in image statistics. Furthermore, they employed data
augmentation, which yielded gains in AP ranging from 3 to 10 per method. In their
data augmentation strategy, they utilized 2D and 3D rotation, occlusion, truncation,
and the introduction of distractor objects into the scene. They used 30%, 60%, and
90% and 100% of synthetic data in their experiments. A model trained exclusively on
real data was used for comparison.

In addition, the study by Georgakis et al. [21] also addressed the “Cut-Paste” method,
but they focused on the semantic and geometric context of the scene. For instance,
the synthetic objects were positioned on tables. Furthermore, the scale of the objects
was taken into account in relation to their depth within the scene. Blending was also
employed as a technique. The approach yielded results that were nearly on par with
those obtained from the real data. The researchers suggested that the semantic and ge-
ometric context of the scene plays an important role in the effectiveness of the method.
They used 0%, 50%, 90% and 99% of synthetic data in their experiments. In addition,
a comparison was made with a model trained exclusively on real data.

Khalil et al. [39] investigated whether synthetically generated images can improve the
PASCAL VOC [14] image dataset performance. They compared the training with
only the original data, with a fully generated dataset and also a mixed dataset. They
showed that the synthetically generated images gained a similar performance as the
training with original data. Their experiment suggests that “Cut-Paste” methods can
be effectively used as a data augmentation technique when an accurate segmentation
of the object is available. Furthermore, the researchers determined that the context is a
crucial factor. A transition to backgrounds that are markedly distinct from those in the
data set is inadvisable. This was observed in the “Bird” class, where the background
was predominantly blue. Other backgrounds in this class introduced noise and were

22

3.1. SYNTHETIC DATA GENERATION

therefore unsuitable. Also the scale, illumination and the ratio between background
and foreground proved to be important.

In his empirical study, Arcidiacono [4] considered various techniques for synthetic
image generation, including those based on the “Cut-Paste” and CAD method, and
analysed the performance increase between them. He used 20 times more synthetic
data than real data, as in the study by Alhaija et al. [2], and the Open Image Dataset
as background images. In his study, he observed that the performance of the model
trained on synthetic data generated from CAD models outperformed that of the model
trained on “Cut-Paste” data. However, it was also noted that when a limited dataset is
available, the “Cut-Paste” method is sufficient and more straightforward to implement.

In their work, Dirr et al. [9] posit that the “Cut-Paste” technique is to be preferred to 3D
modelling, on the grounds that the images are derived from a comparable environment,
thereby reducing the discrepancy between the virtual and the real. Image augmentation
was employed for two distinct purposes: initially, to modify the pre-existing objects;
and subsequently, in conjunction with the newly generated images following their in-
corporation. The experiment was designed for flat and slim parts, with a ratio of 5:1,
and the camera was placed in the top view. Furthermore, it was stated that the flat
and slim parts typically exhibit a limited range of preferred orientations with respect
to the x- and y-axis. Consequently, fewer perspective views of the parts are generated
during the application process. This results in a significant reduction in the number of
source images compared to existing techniques, where a multitude of views on volume
objects are mapped in the source images.

As an approach, Naumann et al. [51] developed a complete pipeline, which also in-
cludes scraping the images from the web. The remaining “Cut-Paste” is based on [12],
but the authors neglected all effects to make the images realistic. Consequently, they
used no blending at all. For their approach, they pasted 1 ! 4 objects onto the back-
ground images and used 2 ! 4 distractor objects. Furthermore, they employed the use
of augmentation techniques, including translation, rotation, and scaling. During the
scaling of the objects, the researchers paid attention to maintaining a range between
15% and 40% of the entire image. Additionally, they applied a maximum of 20%
upscaling and an intersection with other objects of a maximum of 0.5 IoU.

Garcia-Peraza-Herrera et al. [19] focused on the generation of synthetic data for the
detection of surgical tools, such as endoscopes. These tools were subjected to random
zooming, rotation, vertical and horizontal flipping and shifting, with all operations
performed while maintaining connection to the image border. Augmentations were
also applied to the background images, including horizontal and vertical flips, as well
as to the blending images, such as cutouts, noise and blur. They used 1-3 objects
and distractor objects, as well as a 0.5 IoU threshold. The conclusion drawn was that
training with synthetic data is as effective as training with real data.

Furthermore, no work in the literature has been found using the “Cut-Paste” method
for synthetic data generation in the context of microorganisms. This is why it should
be evaluated in this work.

Other Methods Additionally, there are machine learning (ML)-based approaches
that attempt to generate images that appear realistic. These methods are often based on
Generative Adversarial Networks (GANs) [25], which can be used to generate images

23

3.2. SYNTHETIC-TO-REALITY GAP

from text or other data. However, these methods require a lot of computational power
and are more complex to implement than the “Cut-Paste” method.

Lin et al. [43] demonstrated the use of text-to-image GANs to create synthetic images
for object detection. Similarly, Wang et al. [71] and Sixt et al. [65] used GANs to gen-
erate realistic images, such as license plates and barcode-like markers for honeybees,
improving object detector performance. GANs can also be combined with other meth-
ods, as seen in Remez et al. [60], who integrated them with the “Cut-Paste” method,
and Peng and Saenko [53], who combined them with 3D CAD models.

While generative methods can produce highly realistic images, they require significant
computational power and are often unstable to train [23]. In contrast, the “Cut-Paste”
method is more efficient and easier to implement, making it the focus of this work.

3.2 SYNTHETIC-TO-REALITY GAP

To further analyze the research questions, first, the importance of synthetic data realism
in improving model performance on real data is discussed. Second, methods for quan-
tifying the synthetic-to-reality gap are explored, along with additional metrics relevant
to its measurement. Finally, the significance of the ratio between real and synthetic
data in optimizing model performance is discussed.

Su et al. [66] demonstrated the importance of synthetic data realism in improving
model performance on real data. Their work on object viewpoint estimation showed
improved results when training data included real background textures and varying
lighting conditions. Similarly, Hinterstoisser et al. [30] emphasized the importance
of patch-level realism, referring to the realistic appearance of the content within the
bounding box framing the rendered object, which is essential for effective model per-
formance on real-world data. This relates directly to the blending methods discussed
in section 3.3. Additionally, Prakash et al. [56] highlighted that discrepancies in tex-
ture and lighting between real and synthetic data can create a domain gap, significantly
influencing model performance.

Furthermore, Hinterstoisser et al. [30] pointed out that 3D rendering approaches suffer
from a domain gap between real and synthetic data. To mitigate this issue, they rec-
ommend the “Cut-Paste” method, as it reduces the domain gap since the objects are
already embedded in the domain of real images. This is due to the fact that the objects
are extracted from real images, reducing the difference between the synthetic and real
data.

3.2.1 QUANTIFICATION

To quantify the synthetic-to-reality gap, various approaches exist. The different meth-
ods for quantifying the synthetic-to-reality gap has been introduced in subsection 2.5.1.

Object Detection Performance Using object detection models to quantify the
synthetic-to-reality gap is used by Dirr et al. [9], Dwibedi et al. [12], and Prakash
et al. [56]. These models are trained separately on synthetic and real data, and their
performances are compared to measure the synthetic-to-reality gap. A model that per-

24

3.3. BLENDING

forms equally well on both domains exhibits a low synthetic-to-reality gap, whereas
a model that performs significantly better on real data indicates a higher synthetic-to-
reality gap [56].

Image Quality Metrics Another approach to quantifying the synthetic-to-reality gap
relies on image quality metrics such as the FID and CMMD, which were described in
more detail in subsection 2.5.1. Originally designed to assess the quality of images
generated by models like Generative Adversarial Networks (GANs), these metrics can
also be applied to synthetic images generated by alternative methods [5], such as the
“Cut-Paste” method.

Furthermore, the FID and CMMD are not the only available metrics for quantifying the
synthetic-to-reality gap. The Inception Score (IS) [63], for example, is another widely
used metric for evaluating the quality of synthetic images. The issue with IS is that it
does not consider real-world data [5], thereby reducing the applicability of the score to
the experiments that were intended in the experiments of this thesis. While FID and IS
are considered standard for synthetic image evaluation, CMMD is a more recent metric
that has been shown to outperform FID in certain cases [36]. Therefore, Jayasumana
et al. [36] suggest that CMMD may be more robust than FID, as it does not assume
any specific statistical distribution for the feature representations of images.

In consideration of the aforementioned factors, this thesis employs in total three met-
rics to quantify the synthetic-to-reality gap. On the one hand, the object detection
performance is evaluated using the mAP score, which is further described in chap-
ter 4 and chapter 5. On the other hand, the FID and CMMD metrics are additionally
used to quantify the synthetic-to-reality gap of the synthetic images generated by the
“Cut-Paste” method.

In conclusion, the synthetic-to-reality gap is a challenge in synthetic data generation,
as the realism of synthetic data significantly impacts model performance on real data.
To address this issue, it is essential to generate synthetic images that are photorealistic
and indistinguishable from real images. This objective can be achieved by employing
blending methods to merge synthetic images with real images, creating more photore-
alistic results [12].

3.3 BLENDING

The impact of blending on the realism of synthetic images is significant, as it deter-
mines the extent to which the object is integrated into the background. This, in turn,
can affect the synthetic-to-reality gap, as previously discussed in section 3.2. This sec-
tion reviews related work on blending methods used in synthetic dataset generation,
analysing their impact on model performance.

Dwibedi et al. [12] compared various composing methods for their approach, including
Alpha blending, Gaussian blending, and Poisson blending. They propose to synthesize
every training image several times, using the same objects and background, but a dif-
ferent method to blend the objects into the background. Their findings demonstrated
that using all blending methods simultaneously led to an 8 AP increase in performance
metrics. They attributed this improvement to enhanced robustness against pixel arti-
facts, as the model encountered the same image with varying blending methods during

25

3.3. BLENDING

training.

Giakoumoglou et al. [23] propose an approach to generate synthetic datasets for object
detection that requires only a small dataset of target objects and a larger background
dataset that fits the desired environment. The distinction between this approach and
that described in [12] lies in the generation of objects from random noise rather than
the simple pasting of objects from the foreground to the background. This allows for
greater diversity and flexibility in the generated images. They used Gaussian and Pois-
son blending. As model, they compared different Yolo versions, all pre-trained with
the MSCOCO [44] dataset. They also use geometical transformations, like translation
and color transformation.

Ghiasi et al. [22] used Alpha blending and smoothed the edges of the alpha mask
with a Gaussian filter and no geometical transformations. An important difference to
other approaches, is that they used images, in which other objects are already included.
Unlike [12], they found that simply composing without any blending has similar per-
formance to blendig with Gaussian blending. They found that it is very effective and
robust. It also performs well across multiple experimental settings and provides sig-
nificant improvements on top of strong baselines. In contrast to this, [51] used Al-
pha blending, Gaussian blending, Poisson blending and Motion bluring for their “Cut-
Paste” method. As [12] they generated a image for each blending method. Therefore,
from a single foreground and background image, four images were generated, with
each image employing a distinct blending method. They compared themself directly
with [22], leading the conclusion, that blending is important for synthetic images, in
their case. Nevertheless, as the Motion bluring is specifically designed for the purpose
of simulating motion blur, it is not further addressed in this thesis.

Dirr et al. [9] and Zanella et al. [74] utilized Gaussian blending as the sole method
for their cp approach. Their studies focused exclusively on this blending technique,
without exploring or comparing alternative blending methods. This decision highlights
a reliance on Gaussian blending as a standard approach but leaves the effectiveness of
other blending methods unexplored.

In contrast, Giakoumoglou et al. [23], along with Naumann et al. [51] and Dwibedi
et al. [12], used multiple blending methods in their studies. This approach allowed
them to evaluate the impact of different blending techniques on the performance of
their “Cut-Paste” pipeline, providing a more nuanced analysis of blending methods in
synthetic data generation.

In the study by Garcia-Peraza-Herrera et al. [19], the researchers employed a range of
blending methods, including Alpha blending, Gaussian blending and Pyramid blend-
ing. The experimental design involved individual testing of each blending method,
as well as a combination of all methods. Notably, the study incorporated a novel
approach, wherein a mixed blending of all methods was applied to the same image,
referred to as Mixed Blending. The findings revealed that the performance of Pyramid
blending was superior to that of the other individual blending methods, as well as the
multiple blending methods from [12]. However, it was observed that Mixed Blending
exhibited superior performance in comparison to Pyramid blending.

Summarizing, Alpha blending and Gaussian blending are among the most commonly
used techniques due to their computational efficiency and effectiveness in blending

26

3.3. BLENDING

objects into backgrounds [12, 22, 23, 51]. Poisson blending is used less frequently but
has been explored in some puplications [12, 23]. Some approaches have used multiple
blending methods simultaneously to enhance the robustness of the synthetic data [12,
23, 51].

Motion blur has been employed in specific cases [51], but as it is primarily intended to
simulate motion artifacts rather than blending objects naturally, it is not considered fur-
ther in this work. Instead, Pyramid blending has been incorporated due to its promising
results in improving image realism and model performance [19].

27

4 APPROACH

To evaluate the “Cut-Paste” method and the different blending methods, an empir-
ical approach is used. A pipeline has been designed to facilitate the extraction of
objects from images, their augmentation, and subsequent integration into background
images. This pipeline draws upon the methodologies outlined in [9, 12]. The pipeline
is then utilised to generate synthetic images, which are employed for the training of
the YOLOv11 model. The efficacy of the model is evaluated using different test data,
and the results are compared to the baseline test results.

The mAP values are compared to quantify the synthetic-to-reality gap between the
baseline test and the tests with the synthetic data. Additionally, these results are com-
pared to the FID and CMMD metrics to further validate these findings. The mathemat-
ical calculation of the FID and CMMD has been introduced in subsection 2.5.1 and at
the end of this chapter, in section 4.5, the adapted code for this thesis is described.

For the self-trained YOLOv11 model, the code is written in Python and uses the
OpenCV library [6] for image processing. Additionally, the code is written to ex-
port the images in the YOLO format to train the YOLOv11 model. The entire process
can be algorithmically described as follows, based on [12, 23, 51]:

Algorithm 1 Randomized Image Composition with Blending
Require: Foreground images set F, Background images set B, Transformation library

T , Blending methods BM, number of foregorund images n
Ensure: Final composite image Icomposite, YOLO bboxes

1: Randomly select n foreground images {F1, F2, . . . , Fn} ≃ F
2: Randomly select one background image Bbg ↔ B
3: Initialize bboxes ⇐ ⇒
4: for each foreground image Fi do

5: Extract the polygon region from Fi {Set non-polygon pixels to transparent}
6: Apply random augmentations to Fi using T
7: Compute bounding box bbox from the polygon
8: Add bbox to bboxes
9: end for

10: Check for object occlusions or overlaps in bboxes and resolve them
11: Initialize Icomposite ⇐ Bbg

12: for each foreground image Fi do

13: Blend Fi with Icomposite using blending method bm ↔ BM
14: end for

15: return Icomposite, bboxes

where the foreground images set F contains the objects, the background images set B
contains the background images, the transformation library T contains the augmen-
tation methods, the blending methods BM contains the different blending methods,

28

4.1. CUT OBJECTS

Figure 4.1: Basic procedure of the “Cut-Paste” approach. From the objects, which
are cut-out via polygons, the alpha mask is extracted. The objects are then augmented
and pasted into the background images using different blending methods. Adapted
from: [9]

and n is the number of foreground images to pick. First, n images from the F dataset
and one random background image from the B dataset are picked. After that, for each
picked foreground image, the object is cut-out based on a annotated polygon, which
borders the object, as described in section 4.1. Thereby the bounding box of the object
is computed. Furthermore random transformations, as described in section 4.2, are
applied to the objects. After that, the objects are checked for occlusions, as described
in subsection 4.2.1. Then the objects are blended into the background image using
the different blending methods, as described in section 4.3. The final image Fcomposite

and the bounding boxes of the objects, which are needed for the training of the object
detection model, are returned. A visualization of the procedure is shown in Figure 4.1.

The following sections describe the individual steps of the pipeline in more detail.

4.1 CUT OBJECTS

First, the images containing the objects are masked with a polygon. These polygons
are created manually with LabelMe [70], an annotation tool for images. To simplify
the annotation process, EfficientSam [73] is integrated in LabelMe, which can be used
to automatically create polygons around objects in images. As in the study by Garcia-
Peraza-Herrera et al. [19], the polygons are manually validated to ensure that the ob-
jects are correctly cut-out, as this step is crucial for the entire process. As discussed in
the study by Dirr et al. [9], the alpha masks from the objects can then be extracted once
they have been cut-out. This mask can then be utilised for the blending of the objects
into the background images, as demonstrated in section 4.3. The objects are saved as
PNG images, accompanied by the relevant alpha channel. The aforementioned process
can be delineated through the following algorithm:

29

4.2. AUGMENTATION

Algorithm 2 Cutting out the objects
Require: Image Iforeground, Polygon P
Ensure: Object with alpha channel Iobject

1: Create a binary mask M from the polygon P
2: Create an alpha channel A from the mask M
3: Create a new image Iobject with the alpha channel A
4: return Iobject

where the image Iforeground is the image with the object, and the polygon P is the polygon
around the object. The binary mask M is created from the polygon, and the alpha
channel A is created from the mask. The object image Iobject is then created with the
alpha channel A.

4.2 AUGMENTATION

Before pasting the objects into the background images, the objects are augmented to
generate more diverse synthetic images, as by [9, 23, 51]. The process involves a se-
ries of geometric transformations, including rotations, translations, and scalings, which
collectively generate a position for the object within the background image. The aug-
mentation is done with the Albumentations library [7], which is a library for image
augmentation in computer vision tasks. The used transformations can be configured
in a YAML file. To ensure that the objects are not distorted too much, the transforma-
tions are limited to a certain range [9]. The transformations are applied to the objects,
as shown in Listing 4.1. The fg_image is the foreground image with the object, and the
transformations are the transformations from the Albumentations library.

Listing 4.1: Augmentation with Albumentations
def transform_foreground(fg_image, transformations):

return Image.fromarray(transformations(image=np.array(fg_image))[’image’])

4.2.1 OCCLUSION

To prevent object occlusions or overlaps, the bounding boxes of the objects are checked
for intersections. If two objects overlap, the objects are moved to prevent occlusions.
This is done by shifting the objects in the image, as in [12] and [23]. Same as the
IoU metrics in subsection 2.2.1, the intersection of two bounding boxes is calculated.
If the intersection is greater than a certain threshold, the objects are moved to prevent
occlusions. For this approach, the threshold is set to 0.25, as in [12]. To calculate the
intersection of two bounding boxes, an algorithm based on Mileff [48] and Rezatofighi
et al. [61] can be seen in appendix A.

4.3 BLENDING

After the objects have been cut-out and augmented, they are pasted into the background
images. This can be done with or without complex blending. The blending is used

30

4.3. BLENDING

to seamlessly integrate the foreground elements into the background environment, to
prevent the emergence of pixel artifacts, as described in section 3.3.

4.3.1 ALPHA BLENDING

Alpha blending is used to blend the foreground image with the background image, util-
ising the corresponding mask image. The mathematical process is described in sub-
section 2.4.1. The mask image is a binary image that indicates the opacity of the
foreground image. The blending process is controlled by the opacity values in the
mask image, which determine how much of the foreground image is blended with the
background image.

For the Alpha blending, the mask images, extracted in section 4.1, are used to blend the
objects into the background images. A simple algorithm for Alpha blending is shown
in Algorithm 3, which takes the foreground image, background image, and alpha mask
as input and returns the final blended image, using the formula from Equation 2.11. As
seen, for each pixel in the image (x, y), the blended pixel is computed by combining
the foreground and background pixels using the alpha value from the mask image.

Algorithm 3 Alpha Blending for Image Combination
Require: Foreground image Iforeground, Background image Ibackground, Alpha mask ε
Ensure: Final blended image Iblended

1: for each pixel (x,y) in the images do

2: Let A ⇐ ε(x,y)
3: Let F ⇐ Iforeground(x,y)
4: Let B ⇐ Ibackground(x,y)
5: Compute blended pixel:

Iblended(x,y) ⇐ F ·A+ B · (1 !A)

6: end for

7: return Iblended

4.3.2 GAUSSIAN BLENDING

Gaussian blending is similar to Alpha blending, but it uses a blurred mask image in-
stead of a binary mask to blend the foreground and background. The mask is blurred
using a Gaussian filter, which softens edges and creates a smooth transition, ensuring
seamless object integration and reducing edge visibility.

The blending process is guided by the blurred mask, which determines the contribu-
tion of the foreground to the final image. The Algorithm 4 takes the foreground, back-
ground, mask image, kernel size, and sigma as inputs, producing the blended image.
Gaussian blurring is performed using cv2.GaussianBlur() with the specified
parameters.

31

4.3. BLENDING

Algorithm 4 Gaussian Blending for Image Combination
Require: Foreground image Iforeground, Background image Ibackground, Alpha mask ε,

Kernel size k, Sigma ϖ
Ensure: Final blended image Iblended

1: Apply Gaussian blur to the alpha mask:

blurred_mask ⇐ cv2.GaussianBlur(ε,k,ϖ)

2: Blend the foreground with the background using the blurred mask:

Iblended ⇐ alphaBlending(Iforeground, Ibackground, blurred_mask)

3: return Iblended

4.3.3 POISSON BLENDING

For Poisson blending, the cv2.seamlessClone() function from the OpenCV li-
brary [6] is used, as it provides an efficient implementation of Poisson blending [18].
The blending mode is set to cv2.MIXED_CLONE, as it provides a good balance be-
tween the source and destination images, as in [18, 26]. The position of the foreground
image is determined by the augmentation process, as described in section 4.2.

Algorithm 5 Poisson Blending for Image Combination with Seamless Cloning
Require: Foreground image Iforeground, Background image Ibackground, Alpha Mask ε,

Position (x,y)
Ensure: Final blended image Iblended

1: Blend the foreground with the background using seamless cloning:

Iblended ⇐ cv2.seamlessClone(Iforeground, Ibackground,ε, (x,y))

2: return Iblended

4.3.4 PYRAMID BLENDING

As in subsection 2.4.4, the code shows how to blend two images using the Pyramid
blending technique. The images are first decomposed into Gaussian pyramids, and
then the Laplacian pyramids are derived by computing the difference between succes-
sive levels of the Gaussian pyramid. The blending process involves combining the
Laplacian components of the two images using the Gaussian mask levels as weights.
Finally, the blended image is reconstructed by collapsing the pyramid levels. The code
for Pyramid blending is shown in the appendix A.

32

4.3. BLENDING

Algorithm 6 Pyramid Blending with Gaussian and Laplacian Pyramids
Require: Foreground image F, Background image B, Alpha mask ε, pyramid levels

L
Ensure: Blended image Iblended

1: Construct Gaussian Pyramids:

2: Create Gaussian pyramids GF, GB, and Gε for images F, B, and ε with L levels.
3: Construct Laplacian Pyramids:

4: Derive Laplacian pyramids LF and LB from GF and GB by subtracting successive
levels after upsampling.

5: Blend Pyramids:

6: for each level i from 1 to L do

7: Combine corresponding levels of LF and LB using Gε[i]:

Lblend[i] ⇐ Gε[i] · LF[i] + (1 !Gε[i]) · LB[i]

8: end for

9: Reconstruct Blended Image:

10: Reconstruct Iblended by summing up levels of Lblend, starting from the smallest and
progressively adding upsampled levels.

11: return Iblended

4.3.5 MULTIPLE BLENDING METHODS

When employing multiple blending methods, as illustrated in [12], the initial steps
resemble those of variants utilising single blending methods. Initially, a random fore-
ground object is selected and augmented to diversify its position and orientation. Sub-
sequently, a random background is selected, which will be employed for all methods.
Thereafter, for each employed blending method, a final image is generated using its
single blending technique. To illustrate this process, consider a scenario where four
blending methods are employed. In this instance, four images are generated, each
featuring the same foreground objects positioned identically on a shared background.
However, the objects are blended differently, resulting in a diverse array of images.
Upon revisiting the Algorithm 1, line 11 can be adapted to include multiple blending
methods. This can be succinctly described as an extension of the existing algorithm,
replacing line 11 with the following:

Algorithm 7 Multiple Blending Methods
Require: Set of blending methods BM = {bm1,bm2, . . . ,bmn}, Selected and al-

ready augmented foreground images Fi, Selected background image B
1: Initialize set of images {Ibm1 , Ibm2 , . . . , Ibmn}
2: for each blending method bm ↔ BM do

3: for each foreground image Fi do

4: Blend Fi with B using blending method bm
5: end for

6: end for

7: return Set of images {Ib1 , Ib2 , . . . , Ibn}

33

4.4. DATASET MIX

where the set of blending methods BM contains the employed blending methods, the
selected and augmented foreground images Fi are the objects, and the selected back-
ground image B is the background image. These parameters are already defined in
the Algorithm 1. The algorithm initiates the generation of a set of images, which
will ultimately comprise the final images for each blending method. For each blend-
ing method, the foreground images are blended with the background image using the
blending method. The final images are then returned as a set.

4.4 DATASET MIX

In order to evaluate the impact of the various blending methods on the object detection
model, a combination of synthetic and real data is employed, with the ratios of these
two types of data varying. In order to mix the real and synthetic data, the datasets are
first undersampled to the size of the smallest dataset [72]. Then the datasets are mixed
with the desired ratio.

For example, considering the following scenario: Assuming a dataset of 3000 real and
10000 synthetic images, the objective is to blend them with specific ratios, namely
10:90, 30:70, 50:50, 70:30 and 90:10. It is important to note that undersampling im-
poses a limitation on the maximal size of the new dataset, which is constrained to the
size of the smallest existing dataset. Given the availability of 3000 images in the real
dataset, the new dataset will contain 3000 images in total. For the 30:70 ratio, the new
dataset will contain 900 real and 2100 synthetic images. For the 50:50 ratio, the new
dataset will contain 1500 real and 1500 synthetic images. This pattern continues for
all ratios.

4.5 FID AND CMMD

The FID values are calculated with code from Seitzer [64], while the CMMD values
are calculated with code from [35]. Both FID and CMMD are calculated against the
in-domain dataset of the test data, which consists of real images from the domain
of interest. For each synthetic dataset of the tests, the FID and CMMD values are
calculated, and then compared to the baseline to evaluate the realism of the synthetic
images.

34

5 EVALUATION METHOD

The following chapter will outline the methodology for evaluating the proposed syn-
thetic data generation approach, using the self-trained YOLOv11 model. The evalu-
ation of the FID and CMMD metrics has previously been explained in the preceding
section 4.5.

The evaluation is designed to assess the effectiveness of the synthetic data generation
method in bridging the synthetic-to-reality gap between the training and test data. The
evaluation consists of multiple tests, comparing different training configurations and
data compositions. The tests utilise both real-world and synthetic datasets to deter-
mine how well the model generalises to various conditions. The chapter also provides
comprehensive details on the datasets utilised, the experimental setup, the selected
hyperparameters, and the evaluation criteria.

5.1 DATASETS

The tests are based on two datasets containing real-world images. Both datasets con-
tain images of tardigrades taken under a microscope, as described in section 1.1, which
are annotated with bounding boxes to define the position of the tardigrades in the im-
ages.

In-Domain Dataset The in-domain dataset is the main dataset for the evaluation of
the tests in this approach. It reflects the real-world scenario for the aforementioned
use case: the detection of tardigrades in context of a sewage plant. An example of
these images is shown in Figure 1.1a. These images are taken by the “Zentralklärwerk
Darmstadt” and manually annotated with bounding boxes. All images are taken with
the same type of microscope, which has the same magnification and resolution. This
dataset contains 223+57 images with tardigrades and 356 images without tardigrades.
The 356 images without tardigrades are used as background images for the synthetic
data generation. These images contain mud from the sewage plant and also other
microorganisms, which are not the focus of this work.

The 223 images with tardigrades are used as the test set for all tests. The remaining
57 images are on the one hand used in the baseline test, mixed with the cross-domain
dataset. On the other hand they are used for the training of the model in the second and
third test, where the objects are cutted out and pasted onto the background images.

Cross-Domain Dataset The second dataset is a cross-domain dataset from Jaso [34]
published on Roboflow [13], which is publicly available. An example of these images
is shown in Figure 1.1b. The dataset contains 3356 images. The images are taken
with different types of microscopes, having different magnifications and resolutions.
The images are taken in primarly clean water. Barely any distractors are present in the
images. The dataset is already annotated with bounding boxes.

35

5.2. TESTS

This dataset is on the one hand used in the baseline test, mixed with the 57 images
from the in-domain dataset. On the other hand, it is used for the training of the model
in the second and third test. These images are used as they are and the objects are not
used for the synthetic data generation.

5.2 TESTS

To evaluate the effectiveness of the synthetic data generation methods, three tests have
been designed. The first test (T1) serves as a baseline and evaluates the model’s per-
formance on real data from the in-domain dataset. The second test (T2) and the third
test (T3) involve the generation of synthetic data using the “Cut-Paste” method, in
which objects from the in-domain dataset are cut and pasted into images from the
same dataset. T2 uses one blending method, while T3 uses multiple blending methods.

5.2.1 T1 - BASELINE

The first test T1baseline is designed to evaluate the model’s performance when trained on
both real datasets. The model is trained on images from the in-domain dataset and the
cross-domain dataset. Then its tested on images from the in-domain dataset. This test
should show how well the model can generalize to different domains, when trained on
both domains, but with significantly more images from the cross-domain dataset.

5.2.2 T2 - ONE BLENDING METHOD

The second test (T2) involves the generation of new synthetic images, in which mi-
croorganisms from the in-domain dataset are cut and pasted onto images also from
the in-domain dataset. As real data, images from the cross-domain dataset are used.
So a mix of real clean data and synthetic muddy data is used for the training of the
model. For these test, the model is trained with different splits of synthetic and real
data. Based on [12], the model is trained with different splits of 30%, 60%, 90% and
100% synthetic data. The remaining data is real data from the cross-domain dataset.

The test is divided into four different tests, each for another blending technique. As
from section 4.3, Alpha blending, Gaussian blending, Poisson blending and Pyramid
blending are used. The objects from the 57 images of the in-domain dataset are cutted
out and pasted onto the background images of the in-domain dataset. An illustration
for the different generated synthetic images of the second test can be seen in Figure 5.1.

5.2.3 T3 - MULTIPLE BLENDING METHODS

The third test (T3) also involves the generation of new synthetic images. Other as in
the second test, all blending methods are used to blend the objects into the background
images, as proposed by [12, 23, 51]. The blending methods are Alpha blending, Gaus-
sian blending and Pyramid blending, as explained in section 4.3. Poisson blending is
not used, because in T2.3poisson, the blending method did not perform well. A more de-
tailed explaination can be found in Table 6.1, where the results of the tests are presented
and discussed. For each randomly generated set of foregounds and the corresponding

36

5.3. PARAMETERS

(a) Alpha blending (b) Gaussian blending

(c) Poisson blending (d) Pyramid blending

Figure 5.1: Examples for the different blending methods. Used for the training of the
model. Including the ground truth.

background image, each blending method generates one image, so n ⇑ 3 images are
generated. As in the second test, the objects are cut and pasted from the in-domain
dataset to the background images from the in-domain dataset. However, the real data
for this test is taken from the cross-domain dataset, like in the second test. So a mix of
real clean data and synthetic muddy data is used for the training of the model. As with
T2, illustrations of the various blending methodologies can be observed in Figure 5.1.
However, for the third evaluation, all blending methodologies except for the Poisson
blending method are utilised. As in T2, the model is trained with different splits of
synthetic and real data: 30%, 60%, 90% and 100% of synthetic data. The remaining
data is the real data from the cross-domain dataset.

5.3 PARAMETERS

For the tests, different Parameters have been defined. These include the split of the
train and validation data, the hyperparameters for the model, as well as the evaluation
criteria and the parameters for the synthetic data generation.

5.3.1 TRAIN/VALIDATION SPLIT

The training and validation datasets are divided using an 80:20 split. For dataset T1,
consisting of 3356 + 57 = 3413 images, at least 511 images are allocated for valida-
tion. Similarly, for dataset T2 and T3, comprising 3356 images, the validation subset
contains at least 510 images, ensuring a confidence interval of 95% with a margin of
error of 0.04. A detailed overview of the train, validation, and test sizes for each test
is provided in Table 5.1. Due to the undersampling, explained in section 4.4, the train
and validation sizes of the T1baseline test are different from the other tests, as the mixing

37

5.3. PARAMETERS

of the datasets is done before the split. So the mixing process of T2 and T3 oriantes on
the 3356 images of the cross-domain dataset and is then split into the train and valida-
tion set. In contrast, the mixing process of the T1baseline test is done with the 57 images
of the in-domain dataset and the 3356 images of the cross-domain dataset. The split is
then done with the mixed dataset.

Test Train size Valid Size Test size

T1baseline 2684+45=2729 672+12=684 223
T2.1alpha 2684 672 223
T2.2gauss 2684 672 223
T2.3poisson 2684 672 223
T2.4pyramid 2684 672 223
T3multip 2684 672 223

Table 5.1: Train, valid and test sizes for the tests T1, T2 and T3

5.3.2 MODEL

To evaluate the experiments, a YOLOv11m model is utilized. Here, m indicates the
medium size of the model, offering an optimal balance between computational com-
plexity, training time, and detection performance [23, 40]. The model is initialized
with pretrained MSCOCO weights [12, 23, 51], followed by fine-tuning with the ex-
perimental datasets.

5.3.3 HYPERPARAMETERS

The YOLOv11m model is trained over 15 epochs, as preliminary tests indicate conver-
gence within this range. A learning rate of 0.002 is automatically set by the YOLOv11
optimizer [68], with the Adam optimizer employed for training. Batch size is set to
32. Default values from the YOLOv11 framework are used except for the parameters
specified above.

5.3.4 EVALUATION CRITERIA

In order to ensure reproducibility and mitigate variance, each experiment is repeated
20 times. The evaluation metrics employed include the mAP and the IoU, as defined in
section 2.2. These are combined to provide a comprehensive evaluation of the model’s
performance across different IoU thresholds. The following metrics are utilised to
evaluate the model’s performance, as they are commonly employed in object detection
tasks [12, 23, 51]:

• mAP@0.50: The mean average precision at an IoU threshold of 50%.

• mAP@[0.50:0.95]: The mean average precision over a range of IoU thresholds
from 50% to 95% in increments of 5%.

The mAP@0.50 metric is used to evaluate the model’s performance on the primary
task of detecting tardigrades, while mAP@[0.50:0.95] is used to assess the model’s

38

5.3. PARAMETERS

accuracy in localizing the objects.

5.3.5 SYNTHETIC DATA GENERATION

Synthetic datasets are generated by pasting 1–4 objects into background images. Ob-
ject sizes are adjusted with a scaling factor ranging from 0.25 to 0.85, ensuring diver-
sity. Gaussian blending with a kernel size of nine and Pyramid blending with six levels
are applied to create seamless integrations.

39

6 RESULTS

This chapter presents the results of the experiment, which aimed to evaluate the per-
formance of a self-trained object detection model on synthetic data. The results are
analysed and discussed in the context of the research questions. The quantification
of the synthetic-to-reality gap using the self-trained model is compared with the FID
and CMMD metrics. The chapter is structured as follows: First, the results of the
self-trained model are presented, followed by a comparison with the FID and CMMD
values. The chapter concludes with a discussion of the findings in the context of the
research questions.

The self-trained model was trained with the different training data, as described in
chapter 5. All tests were evaluated on the same test data, which are from the in-
domain dataset. Each model was trained 20 times and the mean of the mAP@0.50
and mAP@[0.50:0.95] was calculated. The baseline test T1baseline was trained with
a mix of cross-domain and in-domain data. The tests T2.1alpha, T2.2gauss, T2.3poisson

and T2.4pyramid were trained with different ratios of synthetic to real data, each with
a different blending method. The test T3multip was trained with a combination of all
blending methods, excluding the Poisson blending method, and again with different
ratios of synthetic to real data. A table with the results of the tests is shown in Table 6.1.
The mAP@0.50 represents the mean of the mAP with an IoU threshold of 0.5. The
mAP@[0.50:0.95] is the mean of the mAP with an IoU threshold range from 0.5 to
0.95. The mAP values ranges from 0 to 1, where higher values indicate better results.

The baseline test T1baseline achieved a mAP@0.50 of 0.81, while the training with
only one blending method in T2.1alpha, T2.2gauss, T2.3poisson and T2.4pyramid achieved
a mAP@0.50 up to 0.97, which was achieved with the Pyramid blending method. The
superior performance of the Pyramid blending method is consistent with the findings
of Garcia-Peraza-Herrera et al. [19]. All single blending methods gained a mAP@0.50
between 0.92 and 0.97, except the Poisson blending method, which only achieved a
mAP@0.50 up to 0.43. As stated by Henz et al. [28], the Poisson blending method
also changes the color of images, which is not conducive to photorealistic images.
This may be the reason why this method performed worst in all tests. Using multiple
blending methods in the T3multip achieved a mAP@0.50 between 0.97 and 0.99, which
is the highest mAP@0.50 of all tests. This could be attributed to the model’s capac-
ity to generalise the objects rather than simply mastering the blending technique, as
asserted by Dwibedi et al. [12].

A comparison between the tests is shown in Figure 6.1, which shows the mAP@0.50
as a heatmap. As the basline test T1baseline has no synthetic data, it is a single box in
the plot. The heatmap outlines, that the test T3multip achieved the best results, while the
test T2.3poisson, which used the Poisson blending method, achieved the worst results.

The results of the mAP@[0.50:0.95] are in line with the mAP@0.50. The test
T1baseline achieved a mAP@[0.50:0.95] of 0.58, while the test T3multip achieved
a mAP@[0.50:0.95] of 0.85. The test T2.1alpha to T2.4pyramid achieved a

40

5.3. PARAMETERS

Test Train Dataset mAP@0.50 mAP@[0.50:0.95]

T1baseline cross- & in-domain 0.81 0.58

T2.1alpha

30% Syn + Real 0.93 0.75
60% Syn + Real 0.95 0.80

90% Syn + Real 0.94 0.78
100% Syn 0.94 0.79

T2.2gauss

30% Syn + Real 0.92 0.74
60% Syn + Real 0.95 0.79

90% Syn + Real 0.92 0.77
100% Syn 0.93 0.77

T2.3poisson

30% Syn + Real 0.30 0.18
60% Syn + Real 0.43 0.27

90% Syn + Real 0.26 0.16
100% Syn 0.29 0.17

T2.4pyramid

30% Syn + Real 0.95 0.78
60% Syn + Real 0.97 0.82

90% Syn + Real 0.93 0.76
100% Syn 0.94 0.78

T3multip

30% Syn + Real 0.98 0.82
60% Syn + Real 0.98 0.85
90% Syn + Real 0.99 0.85

100% Syn 0.97 0.94

Table 6.1: Test results for T1, T2, and T3, including mAP@0.50 and
mAP@[0.50:0.95]. The values are averaged over 20 runs. The values ranges from
0 to 1, where higher values indicate better results. The best results per test are high-
lighted in bold.

mAP@[0.50:0.95] between 0.74 and 0.82, except the Poisson blending method, which
only achieved a mAP@[0.50:0.95] of 0.27.

The first research question “How can synthetic generated images impact the model’s
ability to generalize between different environments?” can be answered with the re-
sults of the tests:

Research Question 1
The test T3multip achieved the best results, increasing the mAP@0.50 by approx-
imately 0.18 and the mAP@[0.50:0.95] by about 0.27, compared to the baseline
test. This finding suggests that the model demonstrates superior generalisation
capabilities when trained on a dataset comprising synthetic images from the do-
main of interest.

Furthermore, a comparison is made between the results of the object detection per-
formance and the FID and CMMD values. The FID and CMMD values are utilised
to quantify the synthetic-to-reality gap between synthetic and real images, as an addi-
tional evaluation method. The results of the FID and CMMD are presented in Table 6.2

41

5.3. PARAMETERS

Figure 6.1: Heatmap for T1, T2 and T3. The x-axis shows the ratio of synthetic to real
data. The y-axis shows the blending method. The color shows the mAP@0.50. The
values ranges from 0 to 1, where higher values indicate better results. The best results
per Test are highlighted in bold

and Figure 6.2, calculated against the in-domain dataset of the test data.

Test FID CMMD

T1baseline 408.434 2.635

T2.1alpha 210.000 0.433
T2.2gauss 198.130 0.384
T2.3poisson 221.460 0.506
T2.4pyramid 178.489 0.389

T3multip 185.293 0.330

Table 6.2: FID and CMMD for the tests T1, T2, and T3. Lower values indicate a closer
distribution between synthetic and real images, indicating similar images.

For the test T1baseline, the FID is 408.434 and the CMMD is 2.635. The FID of the test
T3multip is 185.293 and the CMMD is 0.330. The FID of the tests between T2.1alpha

to T2.4pyramid is situated between 178.489 and 221.460. The CMMD for these tests
is situated between 0.389 and 0.506. The FID and CMMD of the test T1baseline is the
highest, while the FID and CMMD of the test T3multip is the lowest.

Comparing the results of the FID and CMMD with the results of the self-trained model,
the test T3multip achieved the best results, while the test T1baseline achieved the worst
results. The tests T2.1alpha to T2.4pyramid are situated between the test T1baseline and
the test T3multip in all three, the self-trained model, the FID and CMMD values. The
results of the FID and CMMD values are in line with the results of the mAP@0.50

42

5.3. PARAMETERS

Figure 6.2: FID and CMMD for the tests T1, T2, and T3. Lower values indicate a
closer distribution between synthetic and real images, indicating similar images.

and mAP@[0.50:0.95] of the self-trained model. This indicates, that the synthetic-
to-reality gap measured by the FID and CMMD is similar to the results of the mAP
scores.

Combining the results of the self-trained model with the FID and CMMD values, the
second research question “How does the selection of the blending method influence
the synthetic-to-reality gap?” can be answered:

Research Question 2
The test results of the self-trained model mostly align with the FID and CMMD
values. The test T3multip achieved the best results and also the lowest FID and
CMMD values. The baseline performance of the test T1baseline was not as good
as the other tests and also had the highest FID and CMMD values. As all these
values are used to measure the synthetic-to-reality gap and they are aligned with
each other, the results indicate that the synthetic-to-reality gap is further influ-
enced by the blending method.

Only the discrepancy of the test T2.3poisson is not as clear, as the FID and CMMD
values are higher than the other tests, but not as high as the test T1baseline. But in the
experiment, the test T2.3poisson performed the worst, which should be reflected in the
FID and CMMD values. It can be hypothesised that the imperfect nature of the FID
and CMMD values in quantifying the synthetic-to-reality gap in this context is due
to the fact that the difference between the images produced by the Poisson blending
method is not only in their statistical properties, but also in their color. This could be
considered a limitation of the FID and CMMD values in this context.

43

7 CONCLUSION

Limited real-world data is a common challenge in machine learning, particularly across
different domains. This thesis explored the potential of synthetic data generation to
mitigate this challenge by augmenting datasets with generated samples. The objective
was to evaluate the “Cut-Paste” method in the context of microorganism detection.

The first research question investigated how well a model trained on synthetic data
generalizes to real data. To assess this, synthetic images of microorganisms were gen-
erated using the “Cut-Paste” method and used to train YOLOv11, a state-of-the-art ob-
ject detection model. The evaluation compared a baseline model trained only on real
images to models trained with different ratios of real and synthetic data. As detailed
in chapter 6, the mixed dataset approach achieved a mAP@0.50 of 0.99, significantly
outperforming the baseline model (mAP@0.50 = 0.81). This suggests that synthetic
data improves model generalization when it complements real data, with data from the
domain of interest.

The second research question examined the impact of different blending methods on
the synthetic-to-reality gap. Five blending methods were tested: Alpha blending,
Gaussian blending, Poisson blending, Pyramid blending, and a multi-blend combin-
ing the best-performing methods. Since Poisson blending tended to distort image
colors and reduce photorealism, it was excluded from the multi-blend. To quantify
the synthetic-to-reality gap, three metrics were analyzed: The difference in the mAP
scores when evaluating the self-trained YOLOv11 model on real images, the Fréchet
Inception Distance (FID) and the CLIP Maximum Mean Discrepancy (CMMD).

The results in chapter 6 indicated that multi-blend images performed best, followed
closely by Pyramid blending. Gaussian blending and Alpha blending yielded similar
results, whereas Poisson blending performed the worst due to its alteration of image
colors. The FID and CMMD values confirmed these observations, as multi-blend im-
ages had the lowest values, indicating a smaller synthetic-to-reality gap.

In summary, this thesis demonstrates that synthetic data, when appropriately blended,
enhances model performance and reduces the synthetic-to-reality gap. The findings
emphasize the importance of selecting suitable blending methods, with multi-blend
proving most effective. These insights contribute to improving synthetic data strate-
gies for microorganism detection and may be extended to other domains facing data
scarcity.

7.1 LIMITATIONS

One limitation of this experiment could be the small dataset used to train the model.
A larger dataset would have allowed a more comprehensive evaluation of the model’s
performance. Additionally, a more detailed analysis of the blending methods could
have provided further insights into the impact of blending on the model’s performance.

44

7.2. FUTURE WORK

This could have included a more in-depth evaluation of the different blending methods
and their impact on the model’s performance.

It is also important to consider that the test T3multip achieved up to 0.99 mAP@0.50,
which is a very high value. This could indicate an overfitting of the model on the
synthetic data.

7.2 FUTURE WORK

Future works could include the integration of distractor objects or noise into the im-
ages to test the model’s robustness. Especially, additional context objects like mud
could be integrated into the images, in the same way as the microorganisms. The mud
could also be augmented or even placed in images containing no mud. Furthermore,
additional blending methods could be tested to evaluate their impact on the model’s
performance. In particular, the Poisson blending technique could be modified to im-
prove its performance and make it more suitable for generating synthetic images of
microorganisms. This could provide further insights into the effectiveness of different
blending methods and help to identify the most suitable blending method for synthetic
data generation in the context of microorganisms. Moreover, other synthetic methods
like 3D models or GANs could be tested to evaluate their performance in the context
of microorganisms.

45

Part II

Appendix

A CODE

Pyramid Blending This code snippet shows the implementation of the pyramid
blending method used in the thesis.

Listing A.1: Pyramid Blending - Code
def _pyramid_blend(self, source, target, mask, num_levels=3):

"""
Args:

source: The source image as a numpy array (RGB)
target: The target image as a numpy array (RGB)
mask: The mask as a numpy array (grayscale) as float32 in the range [0, 1]
num_levels: The number of levels in the Gaussian pyramid

"""
Initialize Gaussian pyramids for the two images and the mask
GA = source.copy()
GB = target.copy()
GM = mask.copy()

Generate the Gaussian pyramids
gpA = [GA]
gpB = [GB]
gpM = [GM]

for i in range(num_levels):
Downsample
GA = cv2.pyrDown(GA)
GB = cv2.pyrDown(GB)
GM = cv2.pyrDown(GM)

gpA.append(np.float32(GA))
gpB.append(np.float32(GB))
gpM.append(np.float32(GM))

Initialize Laplacian pyramids
Start with the smallest Gaussian level
lpA = [gpA[num_levels ! 1]]
lpB = [gpB[num_levels ! 1]]
gpMr = [gpM[num_levels ! 1]]

Build Laplacian pyramids by subtracting successive Gaussian levels
for i in range(num_levels ! 1, 0, !1):

Get the size of the next level
size = (gpA[i ! 1].shape[1], gpA[i ! 1].shape[0])

Compute the Laplacian by subtracting the upsampled Gaussian level from the
current level

47

7.2. FUTURE WORK

LA = np.subtract(gpA[i ! 1], cv2.pyrUp(gpA[i], dstsize=size))
LB = np.subtract(gpB[i ! 1], cv2.pyrUp(gpB[i], dstsize=size))

Append Laplacians to their respective pyramids
lpA.append(LA)
lpB.append(LB)

Append the corresponding Gaussian mask level
gpMr.append(gpM[i ! 1])

Blend the Laplacian pyramids using the Gaussian mask
LS = []
for la, lb, gm in zip(lpA, lpB, gpMr):

Perform weighted blending for each level
ls = la * gm + lb * (1.0 ! gm)
LS.append(ls)

Reconstruct the final blended image by collapsing the pyramid
ls_ = LS[0]
for i in range(1, num_levels):

Get the size of the current level
size = (LS[i].shape[1], LS[i].shape[0])
ls_ = cv2.add(cv2.pyrUp(ls_, dstsize=size),

np.float32(LS[i])) # Add upsampled levels

Clip values to the range [0, 255] to avoid overflow when converting to uint8
ls_ = cv2.normalize(ls_, None, 0, 255, cv2.NORM_MINMAX)

Convert the final blended image to uint8 for display or saving
return Image.fromarray(np.uint8(ls_), ’RGB’)

48

7.2. FUTURE WORK

Occlusion This code snippet shows the implementation of the occlusion check used
in the thesis.

Listing A.2: Check for object occlusions
bbox: xcenter, ycenter, width, height
def calculate_intersection(bbox1, bbox2):

"""
Args:

bbox1: Bounding box 1
bbox2: Bounding box 2

"""
x1, y1, w1, h1 = bbox1
x2, y2, w2, h2 = bbox2
x1_min, x1_max = x1 ! w1 / 2, x1 + w1 / 2
y1_min, y1_max = y1 ! h1 / 2, y1 + h1 / 2
x2_min, x2_max = x2 ! w2 / 2, x2 + w2 / 2
y2_min, y2_max = y2 ! h2 / 2, y2 + h2 / 2
x_overlap = max(0, min(x1_max, x2_max) ! max(x1_min, x2_min))
y_overlap = max(0, min(y1_max, y2_max) ! max(y1_min, y2_min))
return x_overlap * y_overlap

def calculate_union(bbox1, bbox2):
"""
Args:

bbox1: Bounding box 1
bbox2: Bounding box 2

"""
x1, y1, w1, h1 = bbox1
x2, y2, w2, h2 = bbox2
area1 = w1 * h1
area2 = w2 * h2
return area1 + area2 ! calculate_intersection(bbox1, bbox2)

def calculate_iou(bbox1, bbox2):
intersection = calculate_intersection(bbox1, bbox2)
union = calculate_union(bbox1, bbox2)
return intersection / union

def check_for_occlusions(bboxes, threshold):
for i in range(len(bboxes)):

for j in range(i + 1, len(bboxes)):
if calculate_iou(bboxes[i], bboxes[j]) > threshold:

Move the objects to prevent occlusions
...

49

GENERATIVE AI

ERKLÄRUNG ZUR ANWENDUNG VON KI UND KI-UNTERSTÜTZTEN TECH-
NOLOGIEN IM SCHREIBPROZESS

Während der Vorbereitung dieser Arbeit hat der Autor DeepL Write & DeepL Trans-
late verwendet, zur Verbesserung der Lesbarkeit. Nach der Nutzung dieses Tools/Di-
enstes hat der Autor den Inhalt nach Bedarf überprüft und bearbeitet und übernimmt
die volle Verantwortung für den Inhalt der Veröffentlichung.

50

BIBLIOGRAPHY

[1] Edward Adelson et al. “Pyramid Methods in Image Processing”. In: RCA Eng.
29 (Nov. 1983).

[2] Hassan Abu Alhaija et al. Augmented Reality Meets Computer Vision : Efficient
Data Generation for Urban Driving Scenes. Aug. 4, 2017. DOI: 10.48550/arXiv.
1708.01566. arXiv: 1708.01566. URL: http://arxiv.org/abs/1708.01566 (visited
on 11/24/2024).

[3] Felipe Almeida and Geraldo Xexéo. Word Embeddings: A Survey. May 2, 2023.
DOI: 10.48550/arXiv.1901.09069. arXiv: 1901.09069[cs]. URL: http://arxiv.org/
abs/1901.09069 (visited on 02/23/2025).

[4] Claudio Salvatore Arcidiacono. “An empirical study on synthetic image gener-
ation techniques for object detectors”. In: (Oct. 3, 2018). Accepted: 2018-11-
13T10:07:39Z Publisher: Italy. URL: https : / /www.politesi .polimi . it /handle /
10589/142939 (visited on 11/06/2024).

[5] Felix Assion et al. A-BDD: Leveraging Data Augmentations for Safe Au-
tonomous Driving in Adverse Weather and Lighting. Nov. 19, 2024. DOI: 10.
48550/arXiv.2408.06071. arXiv: 2408.06071[cs]. URL: http://arxiv.org/abs/
2408.06071 (visited on 02/22/2025).

[6] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools
(2000).

[7] Alexander Buslaev et al. “Albumentations: Fast and Flexible Image Augmen-
tations”. In: Information 11.2 (Feb. 2020). Number: 2 Publisher: Multidisci-
plinary Digital Publishing Institute, p. 125. ISSN: 2078-2489. DOI: 10 .3390 /
info11020125. URL: https://www.mdpi.com/2078-2489/11/2/125 (visited on
12/16/2024).

[8] Tamara Regina Dieter et al. “Quantifying the Simulation–Reality Gap for Deep
Learning-Based Drone Detection”. In: Electronics 12.10 (2023). ISSN: 2079-
9292. DOI: 10.3390/electronics12102197. URL: https://www.mdpi.com/2079-
9292/12/10/2197.

[9] Jonas Dirr et al. “Cut-paste image generation for instance segmentation for
robotic picking of industrial parts”. In: The International Journal of Advanced
Manufacturing Technology 130.1 (Jan. 1, 2024), pp. 191–201. ISSN: 1433-3015.
DOI: 10.1007/s00170-023-12622-4. URL: https://doi.org/10.1007/s00170-023-
12622-4 (visited on 11/10/2024).

[10] Tausif Diwan, G. Anirudh, and Jitendra V. Tembhurne. “Object detection us-
ing YOLO: challenges, architectural successors, datasets and applications”. In:
Multimedia Tools and Applications 82.6 (Mar. 1, 2023), pp. 9243–9275. ISSN:
1573-7721. DOI: 10.1007/s11042-022-13644-y. URL: https://doi.org/10.1007/
s11042-022-13644-y (visited on 11/23/2024).

51

https://doi.org/10.48550/arXiv.1708.01566
https://doi.org/10.48550/arXiv.1708.01566
https://arxiv.org/abs/1708.01566
http://arxiv.org/abs/1708.01566
https://doi.org/10.48550/arXiv.1901.09069
https://arxiv.org/abs/1901.09069%2520%5Bcs%5D
http://arxiv.org/abs/1901.09069
http://arxiv.org/abs/1901.09069
https://www.politesi.polimi.it/handle/10589/142939
https://www.politesi.polimi.it/handle/10589/142939
https://doi.org/10.48550/arXiv.2408.06071
https://doi.org/10.48550/arXiv.2408.06071
https://arxiv.org/abs/2408.06071%2520%5Bcs%5D
http://arxiv.org/abs/2408.06071
http://arxiv.org/abs/2408.06071
https://doi.org/10.3390/info11020125
https://doi.org/10.3390/info11020125
https://www.mdpi.com/2078-2489/11/2/125
https://doi.org/10.3390/electronics12102197
https://www.mdpi.com/2079-9292/12/10/2197
https://www.mdpi.com/2079-9292/12/10/2197
https://doi.org/10.1007/s00170-023-12622-4
https://doi.org/10.1007/s00170-023-12622-4
https://doi.org/10.1007/s00170-023-12622-4
https://doi.org/10.1007/s11042-022-13644-y
https://doi.org/10.1007/s11042-022-13644-y
https://doi.org/10.1007/s11042-022-13644-y

BIBLIOGRAPHY

[11] D. C. Dowson and B. V. Landau. “The Fréchet distance between multivariate
normal distributions”. In: Journal of Multivariate Analysis 12.3 (1982), pp. 450–
455. ISSN: 0047-259X. DOI: https://doi.org/10.1016/0047-259X(82)90077-X.
URL: https://www.sciencedirect.com/science/article/pii/0047259X8290077X.

[12] Debidatta Dwibedi, Ishan Misra, and Martial Hebert. Cut, Paste and Learn:
Surprisingly Easy Synthesis for Instance Detection. Aug. 4, 2017. arXiv: 1708.
01642. URL: http://arxiv.org/abs/1708.01642 (visited on 11/05/2024).

[13] B. Dwyer, J. Nelson, T. Hansen, et al. Roboflow (Version 1.0) [Software]. 2024.
URL: https://roboflow.com.

[14] Mark Everingham et al. “The Pascal Visual Object Classes (VOC) Challenge”.
In: International Journal of Computer Vision 88.2 (June 1, 2010), pp. 303–338.
ISSN: 1573-1405. DOI: 10.1007/s11263-009-0275-4. URL: https://doi.org/10.
1007/s11263-009-0275-4 (visited on 12/09/2024).

[15] Leon Eversberg and Jens Lambrecht. “Generating Images with Physics-Based
Rendering for an Industrial Object Detection Task: Realism versus Domain
Randomization”. In: Sensors 21.23 (2021). ISSN: 1424-8220. DOI: 10 . 3390 /
s21237901. URL: https://www.mdpi.com/1424-8220/21/23/7901.

[16] Gerd Fischer and Boris Springborn. “Eigenwerte”. In: Lineare Algebra: Eine
Einführung für Studienanfänger. Ed. by Gerd Fischer and Boris Springborn.
Berlin, Heidelberg: Springer, 2020, pp. 241–306. ISBN: 978-3-662-61645-1.
DOI: 10.1007/978- 3- 662- 61645- 1_6. URL: https : / /doi .org/10.1007/978-
3-662-61645-1_6 (visited on 02/23/2025).

[17] Marco Forte and François Pitié. F, B, Alpha Matting. Mar. 17, 2020. DOI:
10.48550/arXiv.2003.07711. arXiv: 2003.07711[cs]. URL: http://arxiv.org/abs/
2003.07711 (visited on 01/04/2025).

[18] Gloria Bueno García et al. Learning image processing with OpenCV: exploit the
amazing features of OpenCV to create powerful image processing applications
through easy-to-follow examples. Community Experience Distilled. Birming-
ham Mumbai: Packt Publishing, 2015. 1 p. ISBN: 978-1-78328-765-9.

[19] Luis C. Garcia-Peraza-Herrera et al. “Image Compositing for Segmentation of
Surgical Tools Without Manual Annotations”. In: IEEE Transactions on Medi-
cal Imaging 40.5 (May 2021). Conference Name: IEEE Transactions on Med-
ical Imaging, pp. 1450–1460. ISSN: 1558-254X. DOI: 10 . 1109 / TMI . 2021 .
3057884. URL: https: / / ieeexplore. ieee.org/abstract /document/9350303 (vis-
ited on 12/12/2024).

[20] M.W Gardner and S.R Dorling. “Artificial neural networks (the multilayer per-
ceptron)—a review of applications in the atmospheric sciences”. In: Atmo-
spheric Environment 32.14 (Aug. 1998), pp. 2627–2636. ISSN: 13522310. DOI:
10 . 1016 / S1352 - 2310(97) 00447 - 0. URL: https : / / linkinghub. elsevier. com /
retrieve/pii/S1352231097004470 (visited on 12/23/2024).

[21] Georgios Georgakis et al. Synthesizing Training Data for Object Detection in
Indoor Scenes. Sept. 8, 2017. arXiv: 1702.07836. URL: http:/ /arxiv.org/abs/
1702.07836 (visited on 11/06/2024).

52

https://doi.org/https://doi.org/10.1016/0047-259X(82)90077-X
https://www.sciencedirect.com/science/article/pii/0047259X8290077X
https://arxiv.org/abs/1708.01642
https://arxiv.org/abs/1708.01642
http://arxiv.org/abs/1708.01642
https://roboflow.com
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.3390/s21237901
https://doi.org/10.3390/s21237901
https://www.mdpi.com/1424-8220/21/23/7901
https://doi.org/10.1007/978-3-662-61645-1_6
https://doi.org/10.1007/978-3-662-61645-1_6
https://doi.org/10.1007/978-3-662-61645-1_6
https://doi.org/10.48550/arXiv.2003.07711
https://arxiv.org/abs/2003.07711%2520%5Bcs%5D
http://arxiv.org/abs/2003.07711
http://arxiv.org/abs/2003.07711
https://doi.org/10.1109/TMI.2021.3057884
https://doi.org/10.1109/TMI.2021.3057884
https://ieeexplore.ieee.org/abstract/document/9350303
https://doi.org/10.1016/S1352-2310(97)00447-0
https://linkinghub.elsevier.com/retrieve/pii/S1352231097004470
https://linkinghub.elsevier.com/retrieve/pii/S1352231097004470
https://arxiv.org/abs/1702.07836
http://arxiv.org/abs/1702.07836
http://arxiv.org/abs/1702.07836

BIBLIOGRAPHY

[22] Golnaz Ghiasi et al. Simple Copy-Paste is a Strong Data Augmentation Method
for Instance Segmentation. June 23, 2021. arXiv: 2012.07177. URL: http://arxiv.
org/abs/2012.07177 (visited on 11/07/2024).

[23] Nikolaos Giakoumoglou, Eleftheria Maria Pechlivani, and Dimitrios Tzovaras.
“Generate-Paste-Blend-Detect: Synthetic dataset for object detection in the agri-
culture domain”. In: Smart Agricultural Technology 5 (Oct. 2023), p. 100258.
ISSN: 27723755. DOI: 10.1016/j.atech.2023.100258. URL: https://linkinghub.
elsevier.com/retrieve/pii/S2772375523000886 (visited on 11/06/2024).

[24] Afzal Godil et al. Performance Metrics for Evaluating Object and Human De-
tection and Tracking Systems. NIST IR 7972. National Institute of Standards
and Technology, July 2014, NIST IR 7972. DOI: 10.6028/NIST.IR.7972. URL:
https : / / nvlpubs . nist . gov / nistpubs / ir / 2014 / NIST. IR . 7972 . pdf (visited on
01/01/2025).

[25] Ian J. Goodfellow et al. Generative Adversarial Networks. June 10, 2014. DOI:
10.48550/arXiv.1406.2661. arXiv: 1406.2661[stat]. URL: http://arxiv.org/abs/
1406.2661 (visited on 12/17/2024).

[26] Han Guo et al. “Face replacement based on 2D dense mapping”. In: Proceedings
of the 2nd International Conference on Image and Graphics Processing. ICIGP
2019: 2019 2nd International Conference on Image and Graphics Processing.
Singapore Singapore: ACM, Feb. 23, 2019, pp. 23–28. ISBN: 978-1-4503-6092-
0. DOI: 10 .1145/3313950.3313964. URL: https : / /dl .acm.org /doi /10 .1145/
3313950.3313964 (visited on 11/25/2024).

[27] Junwei Han et al. “Advanced Deep-Learning Techniques for Salient and
Category-Specific Object Detection: A Survey”. In: IEEE Signal Processing
Magazine 35.1 (Jan. 2018). Conference Name: IEEE Signal Processing Mag-
azine, pp. 84–100. ISSN: 1558-0792. DOI: 10.1109/MSP.2017.2749125. URL:
https://ieeexplore.ieee.org/document/8253582 (visited on 12/09/2024).

[28] Bernardo Henz, Frederico A. Limberger, and Manuel M. Oliveira. “Independent
color-channel adjustment for seamless cloning based on Laplacian-membrane
modulation”. In: Computers & Graphics 57 (June 1, 2016), pp. 46–54. ISSN:
0097-8493. DOI: 10.1016/j.cag.2016.03.004. URL: https://www.sciencedirect.
com/science/article/pii/S0097849316300176 (visited on 12/22/2024).

[29] Martin Heusel et al. GANs Trained by a Two Time-Scale Update Rule Converge
to a Local Nash Equilibrium. Jan. 12, 2018. DOI: 10.48550/arXiv.1706.08500.
arXiv: 1706 . 08500[cs]. URL: http : / / arxiv. org / abs / 1706 . 08500 (visited on
12/23/2024).

[30] Stefan Hinterstoisser et al. On Pre-Trained Image Features and Synthetic Images
for Deep Learning. Nov. 16, 2017. DOI: 10.48550/arXiv.1710.10710. arXiv:
1710.10710. URL: http://arxiv.org/abs/1710.10710 (visited on 11/23/2024).

[31] O. Hmidani and E. M. Ismaili Alaoui. “A comprehensive survey of the R-
CNN family for object detection”. In: 2022 5th International Conference on
Advanced Communication Technologies and Networking (CommNet). 2022 5th
International Conference on Advanced Communication Technologies and Net-
working (CommNet). ISSN: 2771-7402. Dec. 2022, pp. 1–6. DOI: 10 . 1109 /
CommNet56067 . 2022 . 9993862. URL: https : / / ieeexplore . ieee . org / abstract /
document/9993862 (visited on 12/18/2024).

53

https://arxiv.org/abs/2012.07177
http://arxiv.org/abs/2012.07177
http://arxiv.org/abs/2012.07177
https://doi.org/10.1016/j.atech.2023.100258
https://linkinghub.elsevier.com/retrieve/pii/S2772375523000886
https://linkinghub.elsevier.com/retrieve/pii/S2772375523000886
https://doi.org/10.6028/NIST.IR.7972
https://nvlpubs.nist.gov/nistpubs/ir/2014/NIST.IR.7972.pdf
https://doi.org/10.48550/arXiv.1406.2661
https://arxiv.org/abs/1406.2661%2520%5Bstat%5D
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1406.2661
https://doi.org/10.1145/3313950.3313964
https://dl.acm.org/doi/10.1145/3313950.3313964
https://dl.acm.org/doi/10.1145/3313950.3313964
https://doi.org/10.1109/MSP.2017.2749125
https://ieeexplore.ieee.org/document/8253582
https://doi.org/10.1016/j.cag.2016.03.004
https://www.sciencedirect.com/science/article/pii/S0097849316300176
https://www.sciencedirect.com/science/article/pii/S0097849316300176
https://doi.org/10.48550/arXiv.1706.08500
https://arxiv.org/abs/1706.08500%2520%5Bcs%5D
http://arxiv.org/abs/1706.08500
https://doi.org/10.48550/arXiv.1710.10710
https://arxiv.org/abs/1710.10710
http://arxiv.org/abs/1710.10710
https://doi.org/10.1109/CommNet56067.2022.9993862
https://doi.org/10.1109/CommNet56067.2022.9993862
https://ieeexplore.ieee.org/abstract/document/9993862
https://ieeexplore.ieee.org/abstract/document/9993862

BIBLIOGRAPHY

[32] A.K. Jain, Jianchang Mao, and K.M. Mohiuddin. “Artificial neural networks: a
tutorial”. In: Computer 29.3 (Mar. 1996). Conference Name: Computer, pp. 31–
44. ISSN: 1558-0814. DOI: 10.1109/2.485891. URL: https://ieeexplore.ieee.org/
document/485891/?arnumber=485891 (visited on 12/23/2024).

[33] Natalia Jakubowska-Krepska et al. “Tardigrades as potential bioindicators in
biological wastewater treatment plants”. In: European Journal of Ecology 4.2
(Dec. 1, 2018). Number: 2, pp. 124–130. ISSN: 1339-8474. DOI: 10.2478/eje-
2018-0019. URL: https://journals.ku.edu/EuroJEcol/article/view/11634 (visited
on 11/29/2024).

[34] Jasper John Jaso. Tardigrade Dataset. Roboflow. 2022. URL: https://universe.
roboflow.com/jasper-john-jaso/tardigrade (visited on 12/18/2024).

[35] Sadeep Jayasumana. google-research/cmmd at master · google-
research/google-research. GitHub. URL: https : / / github . com / google -
research/google-research/tree/master/cmmd (visited on 12/27/2024).

[36] Sadeep Jayasumana et al. Rethinking FID: Towards a Better Evaluation Metric
for Image Generation. Jan. 25, 2024. DOI: 10.48550/arXiv.2401.09603. arXiv:
2401.09603[cs]. URL: http://arxiv.org/abs/2401.09603 (visited on 12/16/2024).

[37] Matthew Johnson-Roberson et al. Driving in the Matrix: Can Virtual Worlds
Replace Human-Generated Annotations for Real World Tasks? Feb. 25, 2017.
DOI: 10.48550/arXiv.1610.01983. arXiv: 1610.01983. URL: http://arxiv.org/
abs/1610.01983 (visited on 11/23/2024).

[38] Jaskirat Kaur and Williamjeet Singh. “A systematic review of object detection
from images using deep learning”. In: Multimedia Tools and Applications 83.4
(Jan. 1, 2024), pp. 12253–12338. ISSN: 1573-7721. DOI: 10.1007/s11042-023-
15981 - y. URL: https : / / doi . org / 10 . 1007 / s11042 - 023 - 15981 - y (visited on
11/29/2024).

[39] Osama Khalil et al. “Synthetic training in object detection”. In: 2013 IEEE In-
ternational Conference on Image Processing. 2013 IEEE International Confer-
ence on Image Processing. ISSN: 2381-8549. Sept. 2013, pp. 3113–3117. DOI:
10 . 1109 / ICIP. 2013 . 6738641. URL: https : / / ieeexplore . ieee . org / document /
6738641/?arnumber=6738641 (visited on 11/06/2024).

[40] Rahima Khanam and Muhammad Hussain. YOLOv11: An Overview of the Key
Architectural Enhancements. Oct. 23, 2024. DOI: 10.48550/arXiv.2410.17725.
arXiv: 2410 . 17725. URL: http : / / arxiv . org / abs / 2410 . 17725 (visited on
11/23/2024).

[41] Douwe Kiela and Léon Bottou. “Learning Image Embeddings using Convolu-
tional Neural Networks for Improved Multi-Modal Semantics”. In: Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP). EMNLP 2014. Ed. by Alessandro Moschitti, Bo Pang, and Walter
Daelemans. Doha, Qatar: Association for Computational Linguistics, Oct. 2014,
pp. 36–45. DOI: 10.3115/v1/D14-1005. URL: https://aclanthology.org/D14-
1005/ (visited on 02/23/2025).

[42] Eren Kilic. A Review on Image Blending using Image Pyramids. Jan. 2021. URL:
https://www.researchgate.net/publication/352715359_A_Review_on_Image_
Blending_using_Image_Pyramids (visited on 02/23/2025).

54

https://doi.org/10.1109/2.485891
https://ieeexplore.ieee.org/document/485891/?arnumber=485891
https://ieeexplore.ieee.org/document/485891/?arnumber=485891
https://doi.org/10.2478/eje-2018-0019
https://doi.org/10.2478/eje-2018-0019
https://journals.ku.edu/EuroJEcol/article/view/11634
https://universe.roboflow.com/jasper-john-jaso/tardigrade
https://universe.roboflow.com/jasper-john-jaso/tardigrade
https://github.com/google-research/google-research/tree/master/cmmd
https://github.com/google-research/google-research/tree/master/cmmd
https://doi.org/10.48550/arXiv.2401.09603
https://arxiv.org/abs/2401.09603%2520%5Bcs%5D
http://arxiv.org/abs/2401.09603
https://doi.org/10.48550/arXiv.1610.01983
https://arxiv.org/abs/1610.01983
http://arxiv.org/abs/1610.01983
http://arxiv.org/abs/1610.01983
https://doi.org/10.1007/s11042-023-15981-y
https://doi.org/10.1007/s11042-023-15981-y
https://doi.org/10.1007/s11042-023-15981-y
https://doi.org/10.1109/ICIP.2013.6738641
https://ieeexplore.ieee.org/document/6738641/?arnumber=6738641
https://ieeexplore.ieee.org/document/6738641/?arnumber=6738641
https://doi.org/10.48550/arXiv.2410.17725
https://arxiv.org/abs/2410.17725
http://arxiv.org/abs/2410.17725
https://doi.org/10.3115/v1/D14-1005
https://aclanthology.org/D14-1005/
https://aclanthology.org/D14-1005/
https://www.researchgate.net/publication/352715359_A_Review_on_Image_Blending_using_Image_Pyramids
https://www.researchgate.net/publication/352715359_A_Review_on_Image_Blending_using_Image_Pyramids

BIBLIOGRAPHY

[43] Shaobo Lin et al. “Explore the Power of Synthetic Data on Few-shot Ob-
ject Detection”. In: 2023 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW). 2023 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPRW). Vancouver, BC,
Canada: IEEE, June 2023, pp. 638–647. ISBN: 9798350302493. DOI: 10.1109/
CVPRW59228 . 2023 . 00071. URL: https : / / ieeexplore . ieee . org / document /
10208358/ (visited on 11/06/2024).

[44] Tsung-Yi Lin et al. “Microsoft COCO: Common Objects in Context”. In: Com-
puter Vision – ECCV 2014. Ed. by David Fleet et al. Cham: Springer Interna-
tional Publishing, 2014, pp. 740–755. ISBN: 978-3-319-10602-1. DOI: 10.1007/
978-3-319-10602-1_48.

[45] Tony Lindeberg. “Discrete Approximations of Gaussian Smoothing and Gaus-
sian Derivatives”. In: Journal of Mathematical Imaging and Vision 66.5 (Oct. 1,
2024), pp. 759–800. ISSN: 1573-7683. DOI: 10 .1007/s10851- 024- 01196- 9.
URL: https://doi.org/10.1007/s10851-024-01196-9 (visited on 12/27/2024).

[46] Pingli Ma et al. “A state-of-the-art survey of object detection techniques in
microorganism image analysis: from classical methods to deep learning ap-
proaches”. In: Artificial Intelligence Review 56.2 (Feb. 1, 2023), pp. 1627–1698.
ISSN: 1573-7462. DOI: 10.1007/s10462-022-10209-1. URL: https://doi.org/10.
1007/s10462-022-10209-1 (visited on 11/26/2024).

[47] Maria L. Marco. “Defining how microorganisms benefit human health”.
In: Microbial Biotechnology 14.1 (2021). _eprint: https://enviromicro-
journals.onlinelibrary.wiley.com/doi/pdf/10.1111/1751-7915.13685, pp. 35–40.
DOI: https: / /doi .org/10.1111/1751- 7915.13685. URL: https: / /enviromicro-
journals.onlinelibrary.wiley.com/doi/abs/10.1111/1751-7915.13685.

[48] Peter Mileff. “COLLISION DETECTION IN 2D GAMES”. In: 11 (Sept. 2023),
p. 10. DOI: 10.32968/psaie.2023.3.2.

[49] Daniel Mas Montserrat et al. “Training Object Detection And Recognition CNN
Models Using Data Augmentation”. In: Electronic Imaging 29 (Jan. 29, 2017).
Publisher: Society for Imaging Science and Technology, pp. 27–36. ISSN: 2470-
1173. DOI: 10 .2352 / ISSN.2470- 1173 .2017 .10 . IMAWM- 163. URL: https :
//library.imaging.org/ei/articles/29/10/art00005 (visited on 11/06/2024).

[50] Unites Nations. “Sustainable development goals”. In: Sustainable development
knowledge platform (2015).

[51] Alexander Naumann et al. “Scrape, Cut, Paste and Learn: Automated Dataset
Generation Applied to Parcel Logistics”. In: 2022 21st IEEE International Con-
ference on Machine Learning and Applications (ICMLA). 2022 21st IEEE In-
ternational Conference on Machine Learning and Applications (ICMLA). Dec.
2022, pp. 1026–1031. DOI: 10.1109/ICMLA55696.2022.00171. URL: https:
//ieeexplore.ieee.org/document/10069342 (visited on 11/23/2024).

[52] Rafael Padilla et al. “A Comparative Analysis of Object Detection Metrics with
a Companion Open-Source Toolkit”. In: Electronics 10.3 (2021). ISSN: 2079-
9292. DOI: 10.3390/electronics10030279. URL: https://www.mdpi.com/2079-
9292/10/3/279.

55

https://doi.org/10.1109/CVPRW59228.2023.00071
https://doi.org/10.1109/CVPRW59228.2023.00071
https://ieeexplore.ieee.org/document/10208358/
https://ieeexplore.ieee.org/document/10208358/
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/s10851-024-01196-9
https://doi.org/10.1007/s10851-024-01196-9
https://doi.org/10.1007/s10462-022-10209-1
https://doi.org/10.1007/s10462-022-10209-1
https://doi.org/10.1007/s10462-022-10209-1
https://doi.org/https://doi.org/10.1111/1751-7915.13685
https://enviromicro-journals.onlinelibrary.wiley.com/doi/abs/10.1111/1751-7915.13685
https://enviromicro-journals.onlinelibrary.wiley.com/doi/abs/10.1111/1751-7915.13685
https://doi.org/10.32968/psaie.2023.3.2
https://doi.org/10.2352/ISSN.2470-1173.2017.10.IMAWM-163
https://library.imaging.org/ei/articles/29/10/art00005
https://library.imaging.org/ei/articles/29/10/art00005
https://doi.org/10.1109/ICMLA55696.2022.00171
https://ieeexplore.ieee.org/document/10069342
https://ieeexplore.ieee.org/document/10069342
https://doi.org/10.3390/electronics10030279
https://www.mdpi.com/2079-9292/10/3/279
https://www.mdpi.com/2079-9292/10/3/279

BIBLIOGRAPHY

[53] Xingchao Peng and Kate Saenko. Synthetic to Real Adaptation with Generative
Correlation Alignment Networks. Mar. 18, 2017. DOI: 10.48550/arXiv.1701.
05524. arXiv: 1701.05524. URL: http://arxiv.org/abs/1701.05524 (visited on
12/03/2024).

[54] Patrick Pérez, Michel Gangnet, and Andrew Blake. “Poisson image editing”.
In: ACM Transactions on Graphics 22.3 (July 2003), pp. 313–318. ISSN: 0730-
0301, 1557-7368. DOI: 10.1145/882262.882269. URL: https://dl.acm.org/doi/
10.1145/882262.882269 (visited on 11/16/2024).

[55] Thomas Porter and Tom Duff. “Compositing digital images”. In: Proceedings of
the 11th Annual Conference on Computer Graphics and Interactive Techniques.
SIGGRAPH ’84. New York, NY, USA: Association for Computing Machinery,
1984, pp. 253–259. ISBN: 0-89791-138-5. DOI: 10.1145/800031.808606. URL:
https://doi.org/10.1145/800031.808606.

[56] Aayush Prakash et al. “Structured Domain Randomization: Bridging the Reality
Gap by Context-Aware Synthetic Data”. In: 2019 International Conference on
Robotics and Automation (ICRA). 2019 International Conference on Robotics
and Automation (ICRA). ISSN: 2577-087X. May 2019, pp. 7249–7255. DOI:
10.1109/ICRA.2019.8794443. URL: https : / / ieeexplore . ieee .org/document /
8794443/?arnumber=8794443 (visited on 11/06/2024).

[57] Alec Radford et al. Learning Transferable Visual Models From Natural Lan-
guage Supervision. Feb. 26, 2021. DOI: 10 .48550/arXiv.2103.00020. arXiv:
2103.00020[cs]. URL: http://arxiv.org/abs/2103.00020 (visited on 02/23/2025).

[58] Luis Rangel DaCosta et al. “A robust synthetic data generation framework
for machine learning in high-resolution transmission electron microscopy
(HRTEM)”. In: npj Computational Materials 10.1 (July 29, 2024). Publisher:
Nature Publishing Group, pp. 1–11. ISSN: 2057-3960. DOI: 10.1038/s41524-
024- 01336- 0. URL: https:/ /www.nature.com/articles/s41524- 024- 01336- 0
(visited on 11/06/2024).

[59] Joseph Redmon et al. You Only Look Once: Unified, Real-Time Object Detec-
tion. May 9, 2016. DOI: 10.48550/arXiv.1506.02640. arXiv: 1506.02640. URL:
http://arxiv.org/abs/1506.02640 (visited on 11/29/2024).

[60] Tal Remez, Jonathan Huang, and Matthew Brown. Learning to Segment via Cut-
and-Paste. Mar. 16, 2018. DOI: 10 . 48550 / arXiv. 1803 . 06414. arXiv: 1803 .
06414. URL: http://arxiv.org/abs/1803.06414 (visited on 12/03/2024).

[61] Hamid Rezatofighi et al. “Generalized Intersection Over Union: A Metric and a
Loss for Bounding Box Regression”. In: 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA:
IEEE, June 2019, pp. 658–666. ISBN: 978-1-72813-293-8. DOI: 10.1109/CVPR.
2019.00075. URL: https://ieeexplore.ieee.org/document/8953982/ (visited on
01/16/2025).

[62] Adrian Rosebrock. Intersection over Union (IoU) for object detection. PyImage-
Search. Nov. 7, 2016. URL: https://pyimagesearch.com/2016/11/07/intersection-
over-union-iou-for-object-detection/ (visited on 12/09/2024).

56

https://doi.org/10.48550/arXiv.1701.05524
https://doi.org/10.48550/arXiv.1701.05524
https://arxiv.org/abs/1701.05524
http://arxiv.org/abs/1701.05524
https://doi.org/10.1145/882262.882269
https://dl.acm.org/doi/10.1145/882262.882269
https://dl.acm.org/doi/10.1145/882262.882269
https://doi.org/10.1145/800031.808606
https://doi.org/10.1145/800031.808606
https://doi.org/10.1109/ICRA.2019.8794443
https://ieeexplore.ieee.org/document/8794443/?arnumber=8794443
https://ieeexplore.ieee.org/document/8794443/?arnumber=8794443
https://doi.org/10.48550/arXiv.2103.00020
https://arxiv.org/abs/2103.00020%2520%5Bcs%5D
http://arxiv.org/abs/2103.00020
https://doi.org/10.1038/s41524-024-01336-0
https://doi.org/10.1038/s41524-024-01336-0
https://www.nature.com/articles/s41524-024-01336-0
https://doi.org/10.48550/arXiv.1506.02640
https://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
https://doi.org/10.48550/arXiv.1803.06414
https://arxiv.org/abs/1803.06414
https://arxiv.org/abs/1803.06414
http://arxiv.org/abs/1803.06414
https://doi.org/10.1109/CVPR.2019.00075
https://doi.org/10.1109/CVPR.2019.00075
https://ieeexplore.ieee.org/document/8953982/
https://pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/

BIBLIOGRAPHY

[63] Tim Salimans et al. Improved Techniques for Training GANs. June 10, 2016.
DOI: 10.48550/arXiv.1606.03498. arXiv: 1606.03498[cs]. URL: http://arxiv.org/
abs/1606.03498 (visited on 02/22/2025).

[64] Maximilian Seitzer. pytorch-fid: FID Score for PyTorch. Aug. 2020. URL: https:
//github.com/mseitzer/pytorch-fid.

[65] Leon Sixt, Benjamin Wild, and Tim Landgraf. RenderGAN: Generating Real-
istic Labeled Data. Jan. 12, 2017. DOI: 10 .48550/arXiv.1611.01331. arXiv:
1611.01331. URL: http://arxiv.org/abs/1611.01331 (visited on 12/03/2024).

[66] Hao Su et al. Render for CNN: Viewpoint Estimation in Images Using CNNs
Trained with Rendered 3D Model Views. May 21, 2015. DOI: 10.48550/arXiv.
1505.05641. arXiv: 1505.05641[cs]. URL: http : / /arxiv.org /abs /1505.05641
(visited on 02/02/2025).

[67] A. Tsirikoglou, G. Eilertsen, and J. Unger. “A Survey of Image Synthesis Meth-
ods for Visual Machine Learning”. In: Computer Graphics Forum 39.6 (2020).
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14047, pp. 426–
451. ISSN: 1467-8659. DOI: 10 .1111/cgf .14047. URL: https : / /onlinelibrary.
wiley.com/doi/abs/10.1111/cgf.14047 (visited on 11/23/2024).

[68] Ultralytics. Ultralytics Documentation. URL: https : / / docs . ultralytics . com /
reference/engine/trainer (visited on 12/27/2024).

[69] Stanford University. CS231n Convolutional Neural Networks for Visual Recog-
nition. URL: https : / / cs231n . github . io / convolutional - networks/ (visited on
12/30/2024).

[70] Kentaro Wada. labelme: Image Polygonal Annotation with Python. Publication
Title: GitHub repository. 2018. URL: https://github.com/wkentaro/labelme.

[71] Xinlong Wang et al. Adversarial Generation of Training Examples: Applications
to Moving Vehicle License Plate Recognition. Nov. 10, 2017. DOI: 10.48550/
arXiv.1707.03124. arXiv: 1707.03124. URL: http://arxiv.org/abs/1707.03124
(visited on 12/03/2024).

[72] Vitor Werner de Vargas et al. “Imbalanced data preprocessing techniques for
machine learning: a systematic mapping study”. In: Knowledge and Information
Systems 65.1 (Jan. 1, 2023), pp. 31–57. ISSN: 0219-3116. DOI: 10.1007/s10115-
022-01772-8. URL: https://doi.org/10.1007/s10115-022-01772-8.

[73] Yunyang Xiong et al. EfficientSAM: Leveraged Masked Image Pretraining for
Efficient Segment Anything. Dec. 1, 2023. DOI: 10.48550/arXiv.2312.00863.
arXiv: 2312 . 00863[cs]. URL: http : / / arxiv. org / abs / 2312 . 00863 (visited on
02/20/2025).

[74] Riccardo Zanella et al. “Auto-generated Wires Dataset for Semantic Segmenta-
tion with Domain-Independence”. In: 2021 International Conference on Com-
puter, Control and Robotics (ICCCR). 2021 International Conference on Com-
puter, Control and Robotics (ICCCR). Jan. 2021, pp. 292–298. DOI: 10.1109/
ICCCR49711 . 2021 . 9349395. URL: https : / / ieeexplore . ieee . org / document /
9349395 (visited on 11/23/2024).

57

https://doi.org/10.48550/arXiv.1606.03498
https://arxiv.org/abs/1606.03498%2520%5Bcs%5D
http://arxiv.org/abs/1606.03498
http://arxiv.org/abs/1606.03498
https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid
https://doi.org/10.48550/arXiv.1611.01331
https://arxiv.org/abs/1611.01331
http://arxiv.org/abs/1611.01331
https://doi.org/10.48550/arXiv.1505.05641
https://doi.org/10.48550/arXiv.1505.05641
https://arxiv.org/abs/1505.05641%2520%5Bcs%5D
http://arxiv.org/abs/1505.05641
https://doi.org/10.1111/cgf.14047
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14047
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14047
https://docs.ultralytics.com/reference/engine/trainer
https://docs.ultralytics.com/reference/engine/trainer
https://cs231n.github.io/convolutional-networks/
https://github.com/wkentaro/labelme
https://doi.org/10.48550/arXiv.1707.03124
https://doi.org/10.48550/arXiv.1707.03124
https://arxiv.org/abs/1707.03124
http://arxiv.org/abs/1707.03124
https://doi.org/10.1007/s10115-022-01772-8
https://doi.org/10.1007/s10115-022-01772-8
https://doi.org/10.1007/s10115-022-01772-8
https://doi.org/10.48550/arXiv.2312.00863
https://arxiv.org/abs/2312.00863%2520%5Bcs%5D
http://arxiv.org/abs/2312.00863
https://doi.org/10.1109/ICCCR49711.2021.9349395
https://doi.org/10.1109/ICCCR49711.2021.9349395
https://ieeexplore.ieee.org/document/9349395
https://ieeexplore.ieee.org/document/9349395

	Titelblatt
	Abstract
	Zusammenfassung

	I Thesis
	Introduction
	Problem Definition and Relevance
	Goal
	Structure

	Theoretical Foundations
	Object Detection
	Metrics
	Cut-Paste Method
	Blending
	Synthetic-to-Reality Gap

	Related Work
	Synthetic Data Generation
	Synthetic-to-Reality Gap
	Blending

	Approach
	Cut Objects
	Augmentation
	Blending
	Dataset Mix
	FID and CMMD

	Evaluation Method
	Datasets
	Tests
	Parameters

	Results
	Conclusion
	Limitations
	Future work

	II Appendix
	Code

